Superseded Standard

IEEE 836-2001

IEEE Recommended Practice for Precision Centrifuge Testing of Linear Accelerometers

This recommended practice provides a guide to the conduct and analysis of precision centrifuge tests of linear accelerometers, covering each phase of the tests, beginning with the planning. Possible error sources and typical methods of data analysis are addressed. The intent is to provide those involved in centrifuge testing with a detailed understanding of the various factors affecting the accuracy of measurement, both those associated with the centrifuge and those in the data collection process. Model equations are discussed, both for the centrifuge and for a typical linear accelerometer, each with the complexity needed to accommodate the various identified characteristics and error sources in each. An iterative matrix equation solution is presented for deriving the various model equation coefficients for the accelerometer under test from the centrifuge test data.

Sponsor Committee
AES/GA - Gyro Accelerometer Panel
Learn More About AES/GA - Gyro Accelerometer Panel
Status
Superseded Standard
PAR Approval
1997-12-09
Superseded by
836-2009
Superseding
836-1991
Board Approval
2001-06-14
History
ANSI Approved:
2001-10-25
Published:
2001-11-07

Working Group Details

Society
IEEE Aerospace and Electronic Systems Society
Learn More About IEEE Aerospace and Electronic Systems Society
Sponsor Committee
AES/GA - Gyro Accelerometer Panel
Learn More About AES/GA - Gyro Accelerometer Panel
Working Group
AP_WG - Accelerometer Panel Working Group
IEEE Program Manager
Malia Zaman
Contact Malia Zaman
Working Group Chair
Reese Sturdevant

Other Activities From This Working Group

Current projects that have been authorized by the IEEE SA Standards Board to develop a standard.


No Active Projects

Standards approved by the IEEE SA Standards Board that are within the 10-year lifecycle.


No Active Standards

These standards have been replaced with a revised version of the standard, or by a compilation of the original active standard and all its existing amendments, corrigenda, and errata.


1293-1998
IEEE Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Non-Gyroscopic Accelerometers

The specification and test requirements for a linear, single-axis, nongyroscopic accelerometer for use in internal navigation, guidance, and leveling systems are defined. A standard specification guide and a compilation of recommended test procedures for such accelerometers are provide. Informative annexes are given on the various types of such accelerometers (force or pendulous torque rebalance with analog or digital output, vibrating beam, and micromechanical) and error effects, on filtering, noise, and transient analysis techniques, and on calibration and modeling techniques (multipoint tumble analysis, vibration and shock test analyses, and geophysical effects in inertial instrument testing). IEEE 1293 is revision combining IEEE Stds 337 and 530.

Learn More About 1293-1998

836-1991
IEEE Recommended Practice for Precision Centrifuge Testing of Linear Accelerometers

Superseded by 836-2001. A guide to the conduct and analysis of precision centrifuge tests of linear accelerometers is provided, covering each phase of the tests beginning with the planning. Possible error sources and typical methods of data analysis are addressed. The intent is to provide those involved in centrifuge testing with a detailed understanding of the various factors affecting accuracy of measurement, both those associated with the centrifuge and those in the data collection process. Model equations are discussed, both for the centrifuge and for a typical linear accelerometer, each with the complexity needed to accommodate the various identified characteristics and error sources in each. A new iterative matrix equation solution for deriving from the centrifuge test data the various model equation coefficients for the accelerometer under test is presented.

Learn More About 836-1991

These standards have been removed from active status through a ballot where the standard is made inactive as a consensus decision of a balloting group.


No Inactive-Withdrawn Standards

These standards are removed from active status through an administrative process for standards that have not undergone a revision process within 10 years.


No Inactive-Reserved Standards
Subscribe to our Newsletter

Sign up for our monthly newsletter to learn about new developments, including resources, insights and more.