Circuitry that may be added to an integrated circuit to provide access to on-chip Test Access Ports (TAPs) specified by IEEE Std 1149.1 is described in this standard. The circuitry uses IEEE Std 1149.1 as its foundation, providing complete backward compatibility, while aggressively adding features to support test and applications debug. It defines six classes of IEEE 1149.7 Test Access Ports (TAP.7s), T0 to T5, with each class providing incremental capability, building on that of the lower level classes. Class T0 provides the behavior specified by 1149.1 from startup when there are multiple on-chip TAPs. Class T1 adds common debug functions and features to minimize power consumption. Class T2 adds operating modes that maximize scan performance. It also provides an optional hot-connection capability to prevent system corruption when a connection is made to a powered system. Class T3 supports operation in either a four-wire Series or Star Scan Topology. Class T4 provides for communication with either a two-pin or four-pin interface. The two-pin operation serializes IEEE 1149.1 transactions and provides for higher Test Clock rates. Class T5 adds the ability to perform data transfers concurrently with scan, supports utilization of functions other than scan, and provides control of TAP.7 pins to custom debug technologies in a manner that ensures current and future interoperability.
- Standard Committee
- C/TT - Test Technology
- Status
- Active Standard
- PAR Approval
- 2019-09-05
- Superseding
- 1149.7-2009
- Board Approval
- 2022-06-16
- History
-
- Published:
- 2022-10-14
Working Group Details
- Society
- IEEE Computer Society
- Standard Committee
- C/TT - Test Technology
- Working Group
-
CJTAG - Compact JTAG Working Group
- IEEE Program Manager
- Tom Thompson
Contact Tom Thompson - Working Group Chair
- Jason Peck
Other Activities From This Working Group
Current projects that have been authorized by the IEEE SA Standards Board to develop a standard.
No Active Projects
Standards approved by the IEEE SA Standards Board that are within the 10-year lifecycle.
No Active Standards
These standards have been replaced with a revised version of the standard, or by a compilation of the original active standard and all its existing amendments, corrigenda, and errata.
No Superseded Standards
These standards have been removed from active status through a ballot where the standard is made inactive as a consensus decision of a balloting group.
No Inactive-Withdrawn Standards
These standards are removed from active status through an administrative process for standards that have not undergone a revision process within 10 years.
1149.7-2009
IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access Port and Boundary-Scan Architecture
This specification describes circuitry that may be added to an integrated circuit to provide access to on-chip Test Access Ports (TAPs) specified by IEEE Std 1149.1TM-2001. The circuitry uses IEEE 1149.1-2001 as its foundation, providing complete backward compatibility, while aggressively adding features to support test and applications debug. It defines six classes of 1149.7 Test Access Ports (TAP.7s), T0-T5, with each class providing incremental capability, building on that of the lower level classes. Class T0 provides the behavior specified by 1149.1 from startup when there are multiple on-chip TAPs. Class T1 adds common debug functions and features to minimize power consumption. Class T2 adds operating modes that maximize scan performance. It also provides an optional hot-connection capability to prevent system corruption when a connection is made to a powered system. Class T3 supports operation in either a fourwire Series or Star Scan Topology. Class T4 provides for communication with either a two-pin or four-pin interface. The two-pin operation serializes 1149.1 transactions and provides for higher Test Clock rates. Class T5 adds the ability to perform data transfers concurrent with scan, supports utilization of functions other than scan, and provides control of TAP.7 pins to custom debug technologies in a manner that ensures current and future interoperability.