Superseded Standard

IEEE 1679-2010

IEEE Recommended Practice for the Characterization and Evaluation of Emerging Energy Storage Technologies in Stationary Applications

Recommended information for an objective evaluation of an emerging energy storage device or system by a potential user for any stationary application is covered in this document. Energy storage technologies are those that provide a means for the reversible storage of electrical energy, i.e., the device receives electrical energy and is able to discharge electrical energy at a later time. The storage medium may be electrochemical (e.g., batteries), kinetic (e.g., flywheels), electrostatic (e.g., electric double-layer capacitors), thermal, or some other medium. Devices recharged by non-electrical means, such as fuel cells, are beyond the scope of this document. The document provides a common basis for the expression of performance characteristics and the treatment of life-testing data. A standard approach for analysis of failure modes is also provided, including assessment of safety attributes. The intent of this document is to ensure that characterization information, including test conditions and limits of applicability, is sufficiently complete to allow valid comparisons to be made.

Standard Committee
PE/ESSB - Energy Storage & Stationary Battery Committee
Joint Sponsors
PE/ETCC
Status
Superseded Standard
PAR Approval
2006-09-15
Superseded by
1679-2020
Board Approval
2010-06-17
History
ANSI Approved:
2011-03-18
Published:
2010-10-29

Working Group Details

Society
IEEE Power and Energy Society
Standard Committee
PE/ESSB - Energy Storage & Stationary Battery Committee
Working Group
WG_1679 - Emerging Battery Technology Working Group
IEEE Program Manager
Michael Kipness
Contact Michael Kipness
Working Group Chair
James Mcdowall

Other Activities From This Working Group

Current projects that have been authorized by the IEEE SA Standards Board to develop a standard.


No Active Projects

Standards approved by the IEEE SA Standards Board that are within the 10-year lifecycle.


1679-2020
IEEE Recommended Practice for the Characterization and Evaluation of Energy Storage Technologies in Stationary Applications

Recommended information for an objective evaluation of an emerging or alternative energy storage device or system by a potential user for any stationary application is covered in this document. Energy storage technologies are those that provide a means for the reversible storage of electrical energy, i.e., the device receives electrical energy and is able to discharge electrical energy at a later time. The storage medium may be electrochemical (e.g., batteries), kinetic (e.g., flywheels), electrostatic (e.g., electric double-layer capacitors), thermal, compressed air, or some other medium. Devices recharged by non-electrical means, such as fuel cells, are beyond the scope of this document. The document provides a common basis for the expression of performance characteristics and the treatment of life-testing data. A standard approach for analysis of failure modes is also provided, including assessment of safety attributes. The intent of this document is to ensure that characterization information, including test conditions and limits of applicability, is sufficiently complete to allow valid comparisons to be made.

Learn More About 1679-2020

These standards have been replaced with a revised version of the standard, or by a compilation of the original active standard and all its existing amendments, corrigenda, and errata.


No Superseded Standards

These standards have been removed from active status through a ballot where the standard is made inactive as a consensus decision of a balloting group.


No Inactive-Withdrawn Standards

These standards are removed from active status through an administrative process for standards that have not undergone a revision process within 10 years.


No Inactive-Reserved Standards
Subscribe to our Newsletter

Sign up for our monthly newsletter to learn about new developments, including resources, insights and more.