ANALYSIS
OF A LOW-COST GIGABIT DIAGNOSTIC INTERFACE

Technica Engineering
HISTORY & BACKGROUND

HISTORY
BACKGROUND
OBD
CONNECTION
HISTORY
DIAGNOSTICS & ETHERNET

Available solution space in 2004:
MOST, USB, FIREWIRE, Ethernet etc.

The advantages of Ethernet 100BASE-TX:
• No DC coupling
• Every PC has an Ethernet connection
• Cheap, robust
• USE of standard OBD connector
• Effective software stacks

Only with Ethernet 100BASE-TX the SW-update of a modern CAR via the diagnostic interface was possible!
Why was it possible to use a non-standard conform solution with 100Base-TX with enormous efficiency for the diagnostic and programming use cases.

Thanks to a clear analysis for the needs of this use cases and a clever combination it was possible to achieve a solution that became a new worldwide standard. (DoIP)

The following lecture explains the background and the thought process which led to today’s solution.
USE OF STANDARD DIAGNOSTIC CONNECTOR
DIAGNOSTICS & ETHERNET
100BASE-TX

- Using a standard diagnostic connector for high-speed diagnostic access means having to make compromises.
- With a clever combination, these compromises do not become a problem and the result is an ideal and cost-optimized solution.
- An essential aspect is the correct understanding of EMC requirements.
- The availability of the diagnosis functionality must be considered as a system not only just restricted to vehicle access.
USE OF STANDARD DIAGNOSTIC CONNECTOR

DIAGNOSTICS & ETHERNET 100BASE-TX

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OEM specific</td>
</tr>
<tr>
<td>2</td>
<td>SAE-J1850 bus +</td>
</tr>
<tr>
<td>3</td>
<td>OEM specific</td>
</tr>
<tr>
<td>4</td>
<td>GND CAR</td>
</tr>
<tr>
<td>5</td>
<td>GND cable</td>
</tr>
<tr>
<td>6</td>
<td>D-CAN +</td>
</tr>
<tr>
<td>7</td>
<td>ISO 9141-2 (K-Line)</td>
</tr>
<tr>
<td>8</td>
<td>OEM specific</td>
</tr>
<tr>
<td>9</td>
<td>OEM specific</td>
</tr>
<tr>
<td>10</td>
<td>SAE-J1850 bus –</td>
</tr>
<tr>
<td>11</td>
<td>OEM specific</td>
</tr>
<tr>
<td>12</td>
<td>OEM specific</td>
</tr>
<tr>
<td>13</td>
<td>OEM specific</td>
</tr>
<tr>
<td>14</td>
<td>D-CAN –</td>
</tr>
<tr>
<td>15</td>
<td>ISO 9141-2 (L-line 2. K-Line)</td>
</tr>
<tr>
<td>16</td>
<td>V bat</td>
</tr>
</tbody>
</table>

100BASE-TX (DOIP VEHICLE ACCESS)

Option 1:
- Pin3: TX +
- Pin11: TX –
- Pin12: RX +
- Pin13: RX –
- Pin8: Activation Line

Option 2:
- Pin1: TX +
- Pin9: TX –
- Pin12: RX +
- Pin13: RX –
- Pin8: Activation Line
EMC & NEEDS

EMC EMISSIONS
EMC IMMUNITY
CONCLUSION
EMC EMISSIONS
DIAGNOSTICS & ETHERNET
100BASE-TX

No EMC emission impact
Ethernet diagnostic phy is deactivated without test equipment connected to the car.

Emissions Lower than CE-Limits
Ethernet diagnostic phy is activated only when tester is connected. EMC emissions are higher, but car is not in the standard use case. But the diagnostic system has to be CE-compliant.
The vehicle must not have any safety-critical malfunctions. The availability of the diagnosis is not relevant to safety. The diagnostic system has to meet the CE-requirements.
OBD & 1000BASE-T1

OPTIONS
ADVANTAGES
COMPATIBILITY
WHAT ARE THE OPTIONS FOR GBIT?

DIAGNOSTICS & ETHERNET

1000BASE-T1

State of the art for 100Mbit with 100BASE-TX

Diagnostic GW (DoIP)

100BASE-TX

RX (1 Pair)
TX (1 Pair)
Activation
Power

Tester Application

100BASE-TX / 1000BASE-T PHY

100BASE-TX
WHAT ARE THE OPTIONS FOR GBIT?

DIAGNOSTICS & ETHERNET

1000BASE-T1

Use the same strategy as 100BASE-TX for 1000BASE-T1 OBD Connection

1000 Base-T1 Activation

Power

NEW

Diagnostic GW (DoIP) 1000BASE-T1

Media Converter

100BASE-TX / 1000BASE-T PHY

Tester application

#01 in-vehicle

#02

#03 off-vehicle
WHAT ARE THE OPTIONS FOR GBIT?

DIAGNOSTICS & ETHERNET 1000B-T1

Pin1: OEM specific
Pin2: SAE-J1850 bus +
Pin3: OEM specific
Pin4: GND CAR
Pin5: GND Cable
Pin6: D-CAN +
Pin7: ISO 9141-2 (K-Line)
Pin8: Ethernet Activation
Pin9: OEM specific
Pin10: SAE-J1850 bus –
Pin11: OEM specific
Pin12: 1000BASE-T1 +
Pin13: 1000BASE-T1 –
Pin14: D-CAN –
Pin16: V Bat
100BASE-TX OR 1000BASE-T1?
DIAGNOSTICS & ETHERNET 1000BASE-T1

OR

Diagnostic GW (DoIP)

100BASE-TX

Intelligent diagnostic adapter automode

BOTH SOLUTIONS CAN BE SUPPORTED BY ONE TESTER APPLICATION!

Diagnostic GW (DoIP)

1000BASE-T1

COST COMPARISON:
For 1000BASE-T1:
in-vehicle solution:
✓ Phy: identical, due to switches with multi speed phy features
✓ Cable: One UTP cable instead of two
✓ Rest of BOM: comparable
Cost adder for off-vehicle:
+ Cost for special Media-Converter (Only needed per test system not per car)
100BASE-TX OR 1000BASE-T1?
DIAGNOSTICS & ETHERNET 1000BASE-T1

FUTURE CAR FLEETS

1000BASE-T1

100BASE-TX

CAR EXTERNAL COMBO INTERFACE

First prototypes are available

• No direct cost impact on board (cars)
• No change in off-vehicle solutions
• Combo interface possible
• No need to adapt „old cars“
• Off-vehicle “Media-Converter” needed
RESULTS & CONCLUSION

TEST SETUP
RESULTS IN A NUTSHELL
CONCLUSION
• Data communication is very robust.
• SQI Value is excellent.
• The Bit Error Rate is as expected ($<10^{-14}$). Bit Error Rate is more than good enough (TCP for diagnosis).
RESULTS IN A NUTSHELI
DIAGNOSTIC SYSTEM: ON BORD INTERFACE + OFF BOARD TESTSYSTEM

- A EMC certification of a DIAGNOSTIC SYSTEM with this type of interface is possible.
- The Bit Error Rate is very low and the system is robust enough.

12.11.2021
CONCLUSION
Diagnostics & Ethernet 1000Base-T1

• Multi-Gigabit networks need a high performance diagnostic interface
• 1000BASE-T1 will work over a standard OBD interface
• The EMC issues are under control
• The availability and the robustness of the interface is good
• Cost savings in comparison to 100BASE-TX solution possible
• First test setups already exist
CONTACT

Technica Engineering GmbH
Leopoldstraße 236
D - 80807 München

Thomas Königseder, CTO
Thomas.Koenigseder@technica-engineering.de