
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1c™-1995 IEEE Standard for 
Information Technology--Portable Operating System Interface (POSIX(R)) - 
System Application Program Interface (API) Amendment 2: Threads Extension 
(C Language)

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. 345 East 
47th Street New York, New York 10017 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #22 
Topic: pthread_setspecific Relevant Clauses: 17.1.2.2, page 166 D10, lines 192-195

This paragraph states that calling pthread_setspecific() from within a destructor function 
may result in lost storage or infinite loops. This can be a real problem. POSIX.1c has just 
stated that it is impossible to use thread-specific data in an application. A portable and 
correctly behaving application cannot rely on calling pthread_setspecific() from within a 
destructor function. What makes thread-specific data impossible to use is the fact that 
in pthread_key_create() it is stated that when a thread terminates, any non-NULL TSD 
values which have destructors will have the destructor called for them.

The problem here is that the destructor function is called in a loop (potentially forever 
-- so a portable application has to assume forever) until the key value is NULL. However, 
according to pthread_setspecifc() a portable and correctly behaving application has no 
way possible to change the key value to a NULL value. Portable application have to rely 
on “worst-case” guaranteed behavior.

According to the definitions of pthread_setspecific() and pthread_key_create() an appli-
cation cannot reliably make use of thread-specific data with destructor functions or its 
thread will end up in an infinite loop. Could you please clarify the intended behavior of 
these functions? Obviously there must be something missing here or this looping behav-
ior for destructor functions would not have been added since an application must as-
sume it results in an infinite loop.

Interpretation Response 
This is a duplicate. See Interpretation #3, part 6.



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

Rationale for Interpretation 
None.


