
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1c™-1995 IEEE Standard for 
Information Technology--Portable Operating System Interface (POSIX(R)) - 
System Application Program Interface (API) Amendment 2: Threads Extension 
(C Language)

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. 345 East 
47th Street New York, New York 10017 USA All Rights Reserved.

These are interpretations of IEEE Std 1003.1c-1995.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #3 
Topic: Miscellaneous Relevant Clauses: Many

1) Clause 16.1.1.2, page 141 D10, lines 79-83 A default value for the stackaddr attri-
bute is not specified. The behavior is specified if an application wants to specify their 
own stack. It does not specify what to do if they want the implementation to create 
a stack for them. What is the default value of this attribute? NULL to signify the user 
wants the implementation to allocate stacks?

2) Clause 16.1.1.2, page 141 D10, lines 74-78 A default value of the stacksize attri-
bute is not specified. The behavior is specified if an application wants to specify their 
own stack size. It does not specify the value of stacksize if the user wants the imple-
mentation to use a default stacksize. What is the correct stacksize to return as a de-
fault value when the user has not specified a stacksize? Some implementations specify 
a default value of 0 for a default stack. Other implementations specify a default value of 
PTHREAD_STACK_MIN. This confusion can lead to source code portablity problems.

3) Clause 13.5.1.2, page 121 D10, lines 316-332 A default value for the inheritsched 
attribute is not specified. The default behavior needs to be specified for portable appli-
cations or it could result in differing behavior across platforms. What is the default value 
for inheritsched?

4) Clause 13.5.1.2, page 122 D10, lines 333-342 A default value for the schedpolicy at-
tribute is not specified. What is the default value for this attribute?



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

5) Clause 13.5.1.2, page 122 D10, lines 353-357 A default value for the schedparam at-
tribute is not specified. What is the default value for this attribute? Implementations are 
already providing different values (drastically) which will effect portability. Some imple-
mentations consider the default value to be NULL; others return an actual value for this 
attribute as the default value. This case is not merely different default values, but actual 
differences in what this attribute represents. This impacts portability. What is the default 
value/behavior of this attribute?

6) Clause 17.1.2.2, page 166 D10, lines 192-195 This paragraph states that calling 
pthread_setspecific() from within a destructor function may result in lost storage or 
infinite loops. This can be a real problem. POSIX.1c has just stated that it is impossible 
to use thread-specific data in an application. A portable and correctly behaving applica-
tion cannot rely on calling pthread_setspecific() from within a destructor function. What 
makes thread-specific data impossible to use is the fact that in pthread_key_create() it 
is stated that when a thread terminates, any non-NULL TSD values which have destruc-
tors will have the destructor called for them. The problem here is that the destructor 
function is called in a loop (potentially forever -- so a portable application has to assume 
forever) until the key value is NULL. However, according to pthread_setspecifc() a por-
table and correctly behaving application has no way possible to change the key value 
to a NULL value. Portable application have to rely on “worst-case” guaranteed behavior. 
According to the definitions of pthread_setspecific() and pthread_key_create() an appli-
cation cannot reliably make use of thread-specific data with destructor functions or its 
thread will end up in an infinite loop. Could you please clarify the intended behavior of 
these functions? Obviously there must be something missing here or this looping behav-
ior for destructor functions would not have been added since an application must as-
sume it results in an infinite loop.

7) Clause 13.3.1.2, page 114 D10, lines 30-36 Clause 13.3.3.2, page 114 D10, lines 
42-48 According to the new rules for scheduling, the sched_setparam() and sched_set-
scheduler() are not useless in the presence of multithreaded applications. The only effect 
these functions have is on the child process [from fork()] of the target process. An im-
plementation may cause something to happen to the process scope threads, but that’s 
all. This provides a huge hole for system administrators. These functions have a process 
d parameter. This means they were intended so that a process could control the policy 
and priority of another process. If that wasn’t the case, there wouldn’t have been a pid 
as a parameter. Up until now a system administrator could control a process if it was 
getting too much or too little time on the system. Runaway processes with high priority 
could be handled. With the new behavior, there is no way a sysadmin (or any process) 
can control the behavior of a multithreaded process. If some event happens requiring 
a change in the policy/priority of the MT process, only the process itself can do it. The 
worst part is that if one thread in the process goes out of control while a high priori-
ty SCHED_FIFO, no one can control it. A sysadmin cannot do anything to lower that 
thread’s priority (thread IDs are not guaranteed to be known outside of the system). Is 
this the actual intended behavior?????



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

8) Clause 13.6.1.2, page 128-129 D10, lines 581-587 What is the default value of the 
protocol attribute?

9) Clause 13.6.1.2, page 128-129 D10, lines 578-580, 595-606 PTHREAD_PRIO_PRO-
TECT This states that a) the priority of the locking thread shall raise its priority to the 
mutex prioceiling and b) that prioceiling must be a valid priority for SCHED_FIFO. What 
happens if the locking thread is not SCHED_FIFO? Chances are pretty good that the 
prioceiling value is not a valid priority for the scheduling policy of the thread. Even if the 
thread is SCHED_RR the value may not be valid. Do these functions imply that you must 
also change the scheduling policy of the locking thread to SCHED_FIFO? If so, what hap-
pens if the system defines SCHED_FIFO to have lower priorities than say SCHED_RR and 
the thread is under SCHED_RR?

10) Clause 13.6.1.2, page 128-129 D10, lines 590-594 PTHREAD_PRIO_INHERIT This 
states that the blocking thread shall raise the priority of the thread owning the mutex to 
equal that of the blocking thread. Only the priority is being changed here. What happens 
if the threads are in different scheduling policies? The new priority may not be valid in 
that scheduling policy. Is it assumed that these functions also change the policy of the 
thread if they are different?

11) Clause 3.1.3.2, page 27 D10, lines 84-94 This function allows an application to es-
sentially install cancellation type handlers to guarantee that the proper state is main-
tained in the child process after a fork. What is supposed to happen with allocated 
thread-specific data in the child process? These functions are, in effect, executed by the 
thread calling fork. If the other threads have allocated a lot of thread-specific data, there 
is no way for the process to release that memory. The child has immediately inherited a 
memory leak when using TSD. Is this intended?

12) Clause 3.3.6.2, page 39 D10, lines 492-494 This section states that sigpending() re-
turns the signals pending on “either” the process or the thread. The way stated, an im-
plementation is allowed to return process pending signals or thread pending signals. An 
application cannot portably use and rely on what this function does because of “either”. 
What the actual intent to say something more like “returns the union of the signals 
pending on the process and the calling thread”?

13) Clause --None in P1003.1c D10, corresponding section in IEEE Std 1003.1b-1995 is 
14.2.2.2 The behavior for timer_create() specifies what happens when a sigevent struc-
ture of type SIGEV_NONE or type SIGEV_SIGNAL is passed to the function. POSIX.1c 
does not specify what the behavior of this function is if the sigevent structure is for SI-
GEV_THREAD. The most complicated part is when sigevent specifies SIGEV_THREAD but 
the timer is a reloading timer so that it continually expires. What is supposed to hap-
pen with timers and SIGEV_THREAD? A thread is to be created when the timer expires? 
What happens with reloading timers which continually expire? Does only one thread get 
created and from then on an overrun count is incremented? Since these threads are de-



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 4

tached, you have no way of knowing this thread terminates in order to stop increment-
ing the count and create a new thread on the next timer expiration.

Interpretation Response 
1. Stack address: The standard is clear that the default value of the stackaddr attri-
bute is “unspecified”. A conforming system is free to choose any value for this field and 
a conforming application must correctly handle any value. If the attribute is supported, 
the application can specify the placement of the stack by using an attribute object for 
thread creation and the function pthread_attr_setsetstacksize. The interpretations com-
mittee believes that this was the intent of the working and balloting groups. Due to the 
complexities of O/S and compiler interactions, the expectation was that the thread im-
plementation will wish to reserve to itself the ability to determine the placement and size 
of the stack. The rationale for adding the functions to set the fields was derived from 
the needs of real-time systems and embedded environments where the management of 
memory is often handled by the application writer. An application writer wishing to force 
a particular stack address will need to be vary cautious since different systems, proces-
sors, O/Ss, and compilers will varying in the amount of memory required for the stack of 
an application. This issue is analogous to the stack creation in the exec functions, where 
there are no particular requirements on the location or size of the stack in the new pro-
cess image.

2. Stack size: The standard is clear that the default value of the stacksize attribute is 
“unspecified”. A conforming system is free to choose any value for this field and a con-
forming application must correctly handle any value. If the attribute is supported, the 
application can specify the value of the stack size by using an attribute object for thread 
creation and the function pthread_attr_setsetstacksize. The interpretations committee 
believes that this was the intent of the working and balloting groups. Due to the com-
plexities of O/S and compiler interactions, the expectation was that the thread imple-
mentation will wish to reserve to itself the ability to determine the placement and size 
of the stack. The rationale for adding the functions to set the fields was derived from 
the needs of real-time systems and embedded environments where the management of 
memory is often handled by the application writer. An application writer wishing to force 
a particular stack size will need to be vary cautious since different systems, processors, 
O/Ss, and compilers will varying in the amount of memory required for the stack of an 
application. This issue is analogous to the stack creation in the exec functions, where 
there are no particular requirements on the location or size of the stack in the new pro-
cess image.

3. Inheritsched The standard is clear that the default value of the inheritsched attribute 
is “unspecified”. A conforming system is free to choose any value for this field and a 
conforming application must correctly handle any value. The application can specify the 
value of inheritsched by setting it in the attribute object using the function pthread_attr_
setinheritsched. The interpretations committee believes that this was the intent of the 
working and balloting groups. Due to the wide variety and uses of O/Ss implementing 
the standard, the expectation is that the implementation will have a default that makes 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 5

sense in its context.

4. schedpolicy The standard is clear that the default value of the schedpolicy attribute 
is “unspecified”. A conforming system is free to choose any value for this field and a 
conforming application must correctly handle any value. The application can specify the 
value of the schedpolicy by setting it in the attribute object using the function pthread_
attr_setschedpolicy. The interpretations committee believes that this was the intent of 
the working and balloting groups. Due to the wide variety and uses of O/Ss implement-
ing the standard, the expectation is that the implementation will have a default that 
makes sense in its context.

5. schedparams The standard is clear that the default value of the schedparams attribute 
is unspecified. A conforming system is free to choose any value for this field and a con-
forming application must correctly handle any value. The application can specify the val-
ue of schedparams by setting it in the attribute object using the function tthread_attr_
setschedparam. The interpretations committee believes that this was the intent of the 
working and balloting groups. Due to the wide variety and uses of O/Ss implementing 
the standard, the expectation is that the implementation will have a default that makes 
sense in its context.

6. pthread_setspecific The standard is clear in defining the circumstances under which 
lost storage of infinite loops may occur as a result of using thread specific data. The 
statement in 17.1.2.2, lines 72-74 that “calling pthread_setspecific() from a destructor 
may result in lost storage or infinite loops” is clarified by the description of destructor 
behavior in 17.1.1.2, lines 26-33. In particular, the circumstances under which an infinite 
loop or lost storage might occur are described, those being when {PTHREAD_DESTRUC-
TOR_ITERATIONS} iterations of destructor calls have been made and non-NULL key val-
ues remain. As such, calling pthread_setspecific() specifying a NULL value is always safe 
(even in destructors) since it will not result in such storage loss or infinite loops. Inter-
pretation request number 8 raised a related issue -- asking under what circumstances a 
thread-specific data value is set to NULL during destructor calls. The standard currently 
only describes one way -- an explicit call to pthread_setspecific(key, NULL). The inter-
pretations committee believes that it was the intent of the working and balloting groups 
that the thread-specific data value associated with a key should automatically set to 
NULL before the destructor is called in order to prevent infinite loops. Otherwise each 
destructor function would have to somehow determine the key for which it was invoked 
and do a pthread_setspecific(key, NULL) in order to prevent infinite loops.

7. Can’t set thread scheduling parameters from another process The standard is clear 
that it does not define any interfaces to provide this function. The interpretations com-
mittee believes that this was the intent of the working and balloting groups in order to 
allow the widest possible types of implementations and, specifically, library level imple-
mentations would not be able to expose such a system call to another process.

8. protocol The standard is clear that the default value of the protocol attribute is “un-



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 6

specified”. A conforming system is free to choose any value for this field and a conform-
ing application must correctly handle any value. The application can specify the value of 
the protocol by setting it in the attribute object using the function pthread_mutexattr_
setprotocol and then using the attribute object for the creation of a mutex. The interpre-
tations committee believes that this was the intent of the working and balloting groups.

9. PTHREAD_PRIO_PROTECT The standard is clear on pages 305-6 lines 701-705 that 
the process executes at the higher of its priority or that of prioceiling. On pages 287-8, 
the model of scheduling is clear that, conceptually, there is an ordering for all possible 
priority values, independent of scheduling policy. In the case that the effective priority 
range of Sched-RR is higher than that of Sched-FIFO, then the mechanisms provided 
to guard against priority inversion would likely be unsuccessful, should any Sched_RR 
threads use the mutex. The interpretations committee believes that this was the in-
tent of the working and balloting groups. Note also that the standard does not require 
that the priority_ceiling value be a valid priority level for the class of a locking thread. A 
thread’s priority is not affected by its inheritance, only its execution. See also Interpreta-
tion #10.

10. PTHREAD_PRIO_INHERIT The standard is clear on pages 287-8 that the specification 
of a scheduling policy is in the context of a conceptual model that requires specifying 
the relationship between the different polices. The system is to execute the thread with 
the highest effective priority independent of scheduling policy. To achieve this, it may be 
necessary for a thread’s effective priority to be set to a value outside its policy’s priority 
range.

11. Fork Handlers The standard is clear that memory allocated as thread-specific data 
for threads other than the forking thread might be leaked in the child process if not freed 
or otherwise accounted for at fork time since only a copy of the thread that called fork() 
will exist in the child process. This is the intended behavior. Three mechanisms that 
applications can use to eliminate this leakage are described in the rationale in B.3.1.3. 
(1) Perform an exec() call. (2) Use the pthread_atfork() prepare handler to clean up any 
state associated with other threads before the fork() is executed. (3) Use the pthread_
atfork() child handler to clean up any state associated with other threads after the fork() 
is executed.

12. Signal value returned by sigpending() The standard is clear that the set of signals 
returned by sigpending() consists of all of those signals that are blocked from deliv-
ery and are pending on either the process or the calling thread. Equivalently, this is the 
union of the following two sets of signals: 1. The set of signals that are blocked from 
delivery and pending on the process. 2. The set of signals that are blocked from delivery 
and pending on the calling thread.

13. SIGEV_THREAD The standard is clear on page 74 lines 696-698 that each execution 
of the signal handler shall be executed in an environment as if it were the start routine 
of a new thread. The interpretations committee notes that the language in 14.2.2.2 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 7

specifying the notification semantics for timer expiration was changed by IEEE Std 
1003.1i-1995 to explicitly refer to 3.3.1.2. It is unspecified as to whether multiple sig-
nals would be executed sequentially or in parallel: conforming systems are free to do 
either and conforming applications shall handle the case of parallel execution. The inter-
pretation committee believes that this was the intent of the working and balloting groups 
in order to allow a wide range of implementations.

Rationale for Interpretation 
None.


