
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1c™-1995 IEEE Standard for 
Information Technology--Portable Operating System Interface (POSIX(R)) - 
System Application Program Interface (API) Amendment 2: Threads Extension 
(C Language)

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. 345 East 
47th Street New York, New York 10017 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #23 
Topic: pthread_attr_setschedparam Relevant Clauses: 13.5.1.2

There is no way to validate the priority value passed. When this function is called the 
implementation does not know whether the application has or will be changing the policy 
via pthread_schedsetpolicy(). Since it doesn’t have a policy that it knows the application 
wants it cannot veify that the priority is indeed valid. This is one of the reasons POSIX
.1b did not provide totally separate routines to set the policy and priority. In POSIX.1b, 
anytime the policy is changed, the new priority must also be specified. It is possible to 
change the priority only, but the priority is changed for the policy that is in effect at the 
moment.

There is no way to do this with POSIX.1c thread attributes. The priority specified in 
pthread_attr_setschedparam() can only be validated if one of two things are done: a) a 
sched_param is also passed to pthread_attr_setschedpolicy() so that attributes act the 
same way as ALL other scheduling functions. or b) it is mandated that the priority spec-
ified in pthread_attr_setschedparam() must be a valid priority for the scheduling poli-
cy currently in the “schedpolicy” attribute of the specified attributes. This will force the 
applications to always set the policy first and allow the implementation to provide error 
checking on the priority. How is an implementation supposed to provide correct error 
checking on the sched_param structure passed to pthread_attr_setschedparam()? A 
similar problem exists with pthread_attr_setscope().

Most implementations will allow applications to use SCHED_FIFO and SCHED_RR for 
threads of PTHREAD_SCOPE_PROCESS but not for threads of PTHREAD_SCOPE_SYS-
TEM. However, unless it is specified that the permission checking for the scheduling pol-



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

icy and priority are done according to the scope attributes currently set, an implementa-
tion cannot perform proper permission checking on the policy and priority. For example: 
an application may call pthread_attr_setschedpolicy() to change the policy to SCHED_
FIFO while the scope attribute is currently set to PTHREAD_SCOPE_SYSTEM.

The next statement may be a call to pthread_attr_setscope() to change the scope to 
PTHREAD_SCOPE_PROCESS. This ordering of code is currently allowed by POSIX.1c and 
thus an implementation cannot do proper permission checking of scheduling values. 
Should the description of the schedpolicy and schedparam attributes state that they 
check permissions based on the current settings of the contentionscope and schedpolicy 
attributes in the attribute structure? This will force applications to make these calls in a 
predefined order such that an implementation can provide proper error checking.

Interpretation Response 
The standard is clear that setting the scheduling policy or priority values in the schedul-
ing attribute object does not actually change the value for any threads. It is only when 
the attribute object is used in a pthread_create that the parameters are used and it is 
at that time that the parameters shall be consistent. The scheduling policy and priorities 
of an existing thread may be changed using the pthread_setschedparm function which 
requires both a policy and a priority.

Rationale for Interpretation 
None.


