
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1c™-1995 IEEE Standard for 
Information Technology--Portable Operating System Interface (POSIX(R)) - 
System Application Program Interface (API) Amendment 2: Threads Extension 
(C Language)

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. 345 East 
47th Street New York, New York 10017 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #19 
Topic: sched_setparam Relevant Clauses: 13.3.3.2, page 114 D10, lines 30-36 Clause 
13.3.3.2, page 114 D10, lines 42-48

According to the new rules for scheduling, the sched_setparam() and sched_setschedul-
er() are not useless in the presence of multithreaded applications. The only effect these 
functions have is on the child process [from fork()] of the target process. An implemen-
tation may cause something to happen to the process scope threads, but that’s all. This 
provides a huge hole for system administrators. These functions have a process parame-
ter. This means they were intended so that a process could control the policy and priority 
of another process.

If that wasn’t the case, there wouldn’t have been a pid as a parameter. Up until now a 
system administrator could control a process if it was getting too much or too little time 
on the system. Runaway processes with high priority could be handled. With the new be-
havior, there is no way a sysadmin (or any process) can control the behavior of a multi-
threaded process. If some event happens requiring a change in the policy/priority of the 
MT process, only the process itself can do it. The worst part is that if one thread in the 
process goes out of control while a high priority SCHED_FIFO, no one can control it. A 
sysadmin cannot do anything to lower that thread’s priority (thread IDs are not guaran-
teed to be known outside of the system). Is this the actual intended behavior?

Interpretation Response 
This is a duplicate. See Interpretation #3, part 7.

Rationale for Interpretation: None.


