
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1c™-1995 IEEE Standard for 
Information Technology--Portable Operating System Interface (POSIX(R)) - 
System Application Program Interface (API) Amendment 2: Threads Extension 
(C Language)

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #39 
Topic: thread - safety Relevant Clauses: 2.3.9, Page 32, Lines 754-761

The referenced paragraph says that all POSIX.1 and ISO C functions except those enu-
merated within the paragraph shall be thread safe. Why are the functions getenv(), 
localeconv(), and strerror() not in the list of exceptions? Their absence implies that they 
SHALL be thread safe, yet their definitions each state that the object pointed to by their 
return value MAY be overwritten by a subsequent call to the same function.

If this is the case, implementations cannot provide thread safety through internal syn-
chronization because the return object as seen by one thread may be corrupted by an-
other thread AFTER the function returns to the first thread, but before the first thread is 
finished utilizing or copying the object. Although it is quite possible for an implementa-
tion to provide these in a thread safe fashion using thread specific data with destructors, 
the function definitions allow non-thread safe behavior, directly contradicting this para-
graph.

These 3 functions fall into the same general category as asctime() or ttyname(), and 
should be in this list. In the future, thread safe versions of these functions should be 
included in the standard (getenv_r, localeconv_r, strerror_r). Suggested Correction: Add 
getenv(), localeconv(), and strerror() to the list of functions that need not be thread 
safe.

Interpretation Response 
The standard is clear that getenv(), localeconv(), and strerror() must be thread-safe. 
A conforming implementation shall satisfy this condition. However, concerns have been 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

raised in the interpretation committee that this was not the intent of the working and 
balloting groups. This is being referred to the sponsor for consideration.

Rationale for Interpretation 
It appears that the standard has a defect - the working group and the balloting group 
seems to have missed these three functions. Note, that the standard states that all 
POSIX.1 and ISO C be functions be thread safe but for a list of exceptions that have _r 
equivalents. These functions should have been part of the list of exceptions. A geten-
v_r() function should clearly be added. Likewise requirements for localeconv_r() and 
strerror_r() should added for systems that provide localeconv() and strerror(). (Note 
that these ANSI C functions are not required by IEEE Std 1003.1-1996.)


