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Interpretation Request #19 
Topic: sched_setparam Relevant Clauses: 13.3.3.2, page 114 D10, lines 30-36 Clause 
13.3.3.2, page 114 D10, lines 42-48

According to the new rules for scheduling, the sched_setparam() and sched_setschedul-
er() are not useless in the presence of multithreaded applications. The only effect these 
functions have is on the child process [from fork()] of the target process. An implemen-
tation may cause something to happen to the process scope threads, but that’s all. This 
provides a huge hole for system administrators. These functions have a process parame-
ter. This means they were intended so that a process could control the policy and priority 
of another process.

If that wasn’t the case, there wouldn’t have been a pid as a parameter. Up until now a 
system administrator could control a process if it was getting too much or too little time 
on the system. Runaway processes with high priority could be handled. With the new be-
havior, there is no way a sysadmin (or any process) can control the behavior of a multi-
threaded process. If some event happens requiring a change in the policy/priority of the 
MT process, only the process itself can do it. The worst part is that if one thread in the 
process goes out of control while a high priority SCHED_FIFO, no one can control it. A 
sysadmin cannot do anything to lower that thread’s priority (thread IDs are not guaran-
teed to be known outside of the system). Is this the actual intended behavior?

Interpretation Response 
This is a duplicate. See Interpretation #3, part 7.

Rationale for Interpretation: None.


