
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for 
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print 
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE 
Standards Department for the appropriate license. Use of the information contained in 
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #132 
Topic: SIGCHLD Relevant Sections: 1003.1:1996 p59 lines 161-171 PASC

This interpretation request is being filed in order to bring this discussion into scope for 
the Austin Group Revision. The following description is extracted from several emails 
that have discussed this problem (with thanks to Bruce Korb, David Korn, et al).

Question: “Is an implementation that sets the signal handler for SIGCHLD to SIG_DFL in 
any of the exec family of functions conforming?” 
From the email discussion: Bruce Korb: A question occurred to me. If someone does not 
know that signal handling defaulting to Ignore is different from setting the handling to 
ignore, then one can inadvertently exec a shell that has SIGCHLD handling set to ignore. 
I did that myself. If that happens, then how is the shell going to know exit status? If it 
does not know subprocess exit status the shell won’t do anything right. On the other 
hand, if shells are required to set SIGCHLD handling to SIG_DFL for themselves, then 
we have a lot of broken shells out there. Not to mention, broken other programs that get 
surprised when their wait4() calls fail. (It cannot be the fault of the parent process be-
cause they cannot always know which calls will spawn a child process. Even if they did, 
you’ll wind up with pug-ugly code and timing hassles trying to dance around calls that 
may or may not spawn children.)

David Korn: System V Release 2 had a signal named SIGCLD and BSD 4.1 has a signal 
named SIGCHLD which were both referred to as sig child. Both of these were added to 
earlier version of UNIX so both were added in a way that would not affect existing pro-
grams by default. Thus, their default behavior was to behave is if the signal were ig-
nored.

Thus, no blocking call would be generated by either of these signals. The SIGCHLD or 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

SIGCLD were used for implementing job control. Since I had implemented job control for 
both BSD and System V, I pointed out to the standards group that except for SIG_DFL, 
these signals had different semantics. If a signal handler was set for SIGCLD, then a 
signal would be generated if there were any unreaped child processes. When the signal 
handler was caught in System V, it was reset by default to SIG_DFL. However, if a pro-
cess did not reap a child and instead reestablished the signal handler, it would go into an 
infinite loop since the signal would be generated again. The SIGCLD SIG_IGN behavior 
was that the system reaped the child when it completed so that the application didn’t 
have to deal with it.

However, I believe that a process blocked in wait() would be awakened, but I am not 
certain of this. The SIGCHLD signal on the other hand was generated when a child com-
pleted if a signal handler was set at that time. No signal would be generated if a signal 
handler was established while there was waiting children. The SIGCHLD signal was also 
generated when a child process stopped. I believe that BSD treated SIGCHLD SIG_IGN 
the same way that it treated SIGCHLD SIG_DFL. The standard adopted the BSD SIGC-
HLD signal semantics with the following changes:

1. The SA_NOCLDSTOP flag was added so that programs that did not expect a signal on 
stop would not be affected. 

2. The behavior of SIGCHLD was made unspecified when SIG_IGN is specified.

The problem that is being presented is the case in which a process has SIGCHLD set to 
SIG_IGN and then execs a new process. A conforming application would not set SIGC-
HLD to SIG_IGN since the standard leaves this behavior unspecified. An application that 
does set SIGCHLD to SIG_IGN should set it back to SIG_DFL before the call to exec. The 
standard clearly states that signals set to SIG_IGN by the calling process image shall be 
set to be ignored by the new process image. However, the fact that the behavior is un-
specified, allows an implementation to treat this is if SIG_DFL were set and not automat-
ically reap children, even if setting to SIG_IGN by the process itself would reap children.

Change the sentence “Signals set to be ignored (SIG_IGN) by the calling process image 
shall be set to be ignored by the new process image.” to, “Except for SIGCHLD, signals 
set to be ignored (SIG_IGN) by the calling process image shall be set to be ignored by 
the new process image. If SIGCHLD is set to SIG_IGN it shall be set to SIG_DFL in the 
new process image.”

Interpretation Response 
The question at hand is whether or not an exec() implementation conforms to the stan-
dard if it resets SIGCHLD dispositions from SIG_IGN to SIG_DFL. Two application group-
ings have been considered in the formulation of this proposed interpretation: - Appli-
cations that assume they always inherit SIG_DFL; and - Applications that fork() child 
processes but never wait() for them, potentially filling up the process table. The stan-
dard clearly states that implementation behaviour when SIGCHLD is set to SIG_IGN is 
unspecified. Yet, the standard also just as clearly states that signals set to be ignored 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

by the calling process image are to remain set to be ignored by the new process image. 
This “contradiction” is only apparent, but should be clarified. If this is interpreted to 
mean that SIGCHLD is required to be ignored by the new process image, then applica-
tions in the first grouping above cannot conform to the standard without change. Howev-
er, the implementation retains an ability to control applications in the second grouping. 
If the implementation resets SIGCHLD to SIG_DFL, applications in the first grouping are 
allowed to conform to the standard, but the implementation loses its ability to control 
applications in the second grouping through the SIGCHLD disposition they inherit. This 
proposed interpretation takes a somewhat “middle-of-the-road” approach. Whether or 
not an exec() implementation resets SIGCHLD from SIG_IGN to SIG_DFL would be left 
as unspecified, including the existence or even nature of any mechanism the implemen-
tation would use to decide.

Rationale for Interpretation 
This proposed interpretation does not invalidate the conformance of existing implemen-
tations or applications. It extends the implementation’s ability to deal with the issues 
involved as it sees fit, by not constraining the implementation to a specific behaviour. 
The implementation may wish to - unconditionally leave SIGCHLD set to SIG_IGN; or - 
unconditionally reset SIGCHLD to SIG_DFL; or - provide some mechanism, not specified 
in this standard, to control inherited SIGCHLD dispositions. This proposed interpretation 
also negates the need to “invent” some other signal disposition for SIGCHLD.

Notes to Project Editor (not part of the interpretation) 
XSH, exec(), DESCRIPTION, page 777 - Line 9894, replace “Signals” with “Except for 
SIGCHLD, signals” - Line 9896, insert just before “After” at the tail end “If the SIGCHLD 
signal is set to be ignored by the calling process image, it is unspecified whether the 
SIGCHLD signal is set to be ignored or to the default action in the new process image.” 
XSH, posix_spawn(), DESCRIPTION, page 1373 - Line 28599, replace “Signals set to be 
ignored” with “Except for SIGCHLD, signals set to be ignored” - Add new paragraph after 
line 28602, reading “If the SIGCHLD signal is set to be ignored by the calling process, it 
is unspecified whether the SIGCHLD signal is set to be ignored or to the default action 
in the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag 
being set in the spawn_flags attribute of the object referenced by attrp and the SIGC-
HLD signal being indicated in the spawn-sigdefault attribute of the object referenced by 
attrp.”

XRAT, B.2.4.3 Signal Actions, page 3389 Insert new paragraph between lines 3638 and 
3639, reading “Whether or not an implementation allows SIG_IGN as a SIGCHLD dis-
position to be inherited across a call to one of the exec() family of functions or posix_
spawn() is explicitly left as unspecified. This change was made as a result of IEEE PASC 
Interpretation #132, and permits the implementation to decide between the following 
alternatives.

- Unconditionally leave SIGCHLD set to SIG_IGN, in which case the implementation 
would not allow applications that assume inheritance of SIG_DFL to conform to the stan-



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 4

dard without change. The implementation would however retain an ability to control ap-
plications that create child processes but never call one of the wait() family of functions, 
potentially filling up the process table. 
- Unconditionally reset SIGCHLD to SIG_DFL, in which case the implementation would 
allow applications that assume inheritence of SIG_DFL to conform. The implementation 
would however lose an ability to control applications that spawn child processes but nev-
er reap them. 
- Provide some mechanism, not specified in this standard, to control inherited SIGCHLD 
dispositions.”

Forwarded to Interpretations Group: 12 Mar 2001 Recirculation posted: 28 Mar 2001 
Finalized:10 April 2001


