IEEE STANDARDS ASSOCIATION <$IEEE

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 1997 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #79
Topic: unlink Relevant Clauses: 5.5.1

I would like to get IEEE’s interpretation of the compliance of Vendor XXX implementa-
tion of the unlink function on the YYY operating system. In particular, the unlink function
fails to remove the last directory entry for a file if that file is an executable that some
process is running. The following two small C programs can be used to demonstrate the
unlink failure on YYY O/S. This first program should be compiled and run with an argu-
ment which specifies the length of time this program should sleep. /* Running execut-
able (sleeping). */ /* Run with an integer argument to specify sleep time. */ #include
#include #include int main(int argc, char *argv[]) { int seconds = 0; if (argc !'=2 ) {
fprintf(stderr, “Supply an integer for the sleep argument.\n”); exit(EXIT_FAILURE); }
seconds = atoi(argv[1]); if ( 'seconds ) { fprintf(stderr, “"Supply an integer for the sleep
argument.\n”); exit(EXIT_FAILURE); } sleep(seconds); exit(EXIT_SUCCESS); }

This second program will attempt to unlink the running executable which was gen-
erated from the previous code. This program needs an argument which specifies the
name of the file which is to be unlinked. #include #include #include int main(int argc,
char *argv[]) { if (argc !'= 2 ) { fprintf(stderr, “"Supply a filename for the unlink argu-
ment.\n"); exit(EXIT_FAILURE); } if ( unlink(argv[1]) ) { fprintf(stderr, “Error unlinking
%s\n”, argv[1]); perror(NULL); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } Local
testing has shown that the second program will fail to unlink the running executable on
YYY O/S systems. The unlink succeeds on all other UNIX systems that I have tested.

Interpretation Response

The implementation is conforming if the errno returned in this case is EBUSY or another
error not listed in 5.5.1.4, and the behavior is described in the conformance documenta-
tion.

445 Hoes Lane, Piscataway, NJ 08854 USA « +1 732 981 0060 * +1 732 981 0027 * standards.ieee.org
Page 1



IEEE STANDARDS ASSOCIATION <$IEEE

Rationale for Interpretation

Clause 2.4 allows any function to fail for “additional errors.” The error number generated
can be the same as one of those listed if the corrective action taken by the application is
identical to the condition described in the standard. Since there is nothing a conforming
application can do for an EBUSY error from unlink(), it is acceptable to return this error
when the file itself is busy instead of the directory.

445 Hoes Lane, Piscataway, NJ 08854 USA « +1 732 981 0060 * +1 732 981 0027 * standards.ieee.org
Page 2



