
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #27
Topic: _POSIX_VDISABLE symbol Relevant Sections: 2.9.4

A question has been raised with regard to the requirements POSIX.1 places on the form
of the value defined for the _POSIX_VDISABLE symbol. Does the Standard require that
_POSIX_VDISABLE be a preprocessor number? For example, an implementation might
use the value (unsigned char)255, which the C preprocessor won’t compare to -1.

_POSIX_VDISABLE is listed as an “Execution-Time Symbolic Constant”. Must it also be
usable in numerical comparisons in the preprocessor? The constants that are guaranteed
to be usable at compile time are listed separately, as “Compile- Time Symbolic Con-
stants”.

My reading is that though it would be nice if one could use this value at compile time,
and though the authors might have intended that it be usable this way, the standard
does not guarantee it. From POSIX.1 (2.9.4, page 38, lines 1129 ff.):

The constants in Table 2-11 may be used by the application, at execution time, to deter-
mine which optional facilities are present and what actions shall be taken by the imple-
mentation ...

Under the implementation example described above, the proper way to use a constant
from table 2.11 is to use #ifdef to see whether it’s defined in <unistd.h>, but to do a
numerical comparison only at run time.

Interpretation Response
The standard does not require that _POSIX_VDISABLE be a preprocessor number. The
standard does not require that _POSIX_VDISABLE be usable in numeric comparisons in

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

the preprocessor.

Rationale for Interpretation
The standard makes no requirement that the constant _POSIX_VDISABLE be a prepro-
cessor number. The requirements relating this constant in section 2.9.4 relate only to
use at execution time.

It is understandable why an application might like to be able to use _POSIX_VDISABLE
as a preprocessor constant. The wording in section 2.9.4:

If any of the constants in Table 2-11 are defined to have value -1 in the header can
suggest, on casual reading, code like the following to minimize size and optimize effi-
ciency for each implementation:

#ifdef _POSIX_VDISABLE
#if _POSIX_VDISABLE == -1
 /* code that assumes no vdisable capability */
#else
 /* code that assumes vdisable capability */
#endif
#else
 /* code that uses pathconf() to determine vdisable capability */
#endif

However, there is no wording in the standard to actually back up that suggestion, and
silence on the part of the standard means no requirement.

There are reasons why an implementor might want to define a value that is not a pre-
processor number, such as including a type cast to avoid problems in comparing the val-
ue to a member of the c_cc array member of a termios struct (which is constrained by
the standard to be an unsigned integer type). Since no wording in the standard prohibits
this, it is implicitly permitted.

Thus, rather than the above fragment, an implementation could include code like:

#ifdef _POSIX_VDISABLE
 if (_POSIX_VDISABLE == -1) {
 /* code that assumes no vdisable capability */
 } else {
 /* code that assumes vdisable capability */
 }
#else
 /* code that uses pathconf() to determine vdisable capability */
#endif

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

Of course it is generally simplest, though potentially less efficient, to just write the code
that uses pathconf().

