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Interpretation Request #48
Topic: last close() on terminal Relevant Sections: 7.1.1.11 Classification: No change

POSIX.1-1990 section 7.1.1.11 Closing a Terminal  Device file states:

The last process to close a terminal device file shall cause any output to be sent to the
device and any input to be discarded.

Is it required behaviourthat in the case that output has previously been suspended
by a call to tcflow(), that the close() will allow output to be restarted or is it permissi-
ble behaviour for the data to be discarded? X/Open proposes that close() will allow
output to be restarted.

Interpretation Response

The standard does not specify that a close() on a terminal device file include the equiva-
lent of a call to tcflow(fd, TCOON). The language of 7.1.1.11 allows, but does not require
such an action.

An implementation that discards output at the time the close() is called, after report-
ing in the return value to the write() call that the data was written does not conform to
POSIX.1.

Rationale for Interpretation

Section 7.1.1.8 clearly allows for some buffering to occur on terminal output, but the
standard leaves unspecified the detailed behavior of this buffering and its interaction
with program-directed flow control (tcflow()) and externally generated flow control. It is
worth reiterating that an application has functions such as tcdrain(), tcflush(), and tc-
flow() available to obtain the detailed behavior it requires.
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At the time of last close() on a terminal device, an application relinquishes any ability
to exert flow control via tcflow(). Contrary to B.7.1.1.11, the implementation is never
permitted to “cause a flush of pending output”, if “flush” is taken to mean “discard”. In
the situation described, the two options are “resume output and wait for it to drain” and
“block (until interrupted by a signal)”. External flow control could cause the first option
to degenerate into the second. One overall intent is that a naive program can have its
output directed to a terminal device without danger of truncation from close() being
called immediately after successful return from the last write().
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