
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for 
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print 
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE 
Standards Department for the appropriate license. Use of the information contained in 
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #61 
Topic: signals and preemption Relevant Sections: 3.1.1.2

In the following C program, given that the fork function call completes successfully, and 
neither the child or parent processes are delivered any signals, does POSIX.1 require 
that the parent reach the point where it returns 0 from main? Must a signal be deliver-
able once the child has entered the endless loop? I don’t know if I’ve successfully em-
bodied my questions in code, but basically my questions are: 1) Does POSIX.1 REQUIRE 
support for pre-emption of one process by another? 2) Are signals required to be deliv-
erable independent of the execution state(s) of the processes that are executing? ex-
ample C program: #define A_LONG_TIME 100000 #include <unistd.h> main() { switch 
(fork()) { case -1: return 1; case 0: /* child is running */ /* child enters endless loop*/ 
for (;;) ; default: /* parent is running*/ if (sleep(A_LONG_TIME)) return 1; return 0; } }

Interpretation Response 
The standard does not require support for pre-emption of one process by another. The 
standard is silent on the issue of process scheduling altogether; the only mention the 
standard makes regarding multiprocess execution is “...both the parent and child pro-
cesses shall be capable of executing independently before either terminates” (Sec. 
3.1.1.2, lines 37-38). This means that it is allowable that in the example, if the child 
never blocks the parent will never execute, as long as it is capable of executing inde-
pendently should the child ever block.

Signals are not required to be deliverable independent of the execution state(s) of the 
processes that are executing. Section 3.3.1.2 discuss ‘generation’ and ‘delivery’ as sep-
arate events, with the delivery interval (the ‘pending’ state) being ‘undetectable’ (and 
hence to some degree untestable) by the application. The standard is silent on the 
‘pending’ state of the signal; it is unspecified when the pending state is ended for a pro-



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

cess that is not blocking that particular signal. Hence, there is no requirement for forcing 
delivery. The exceptions to this are specified in the description of the kill() interface, in 
which delivery is mandatory in the case of a process sending a signal to itself using this 
interface, and also sigprocmask() which has wording that requires signals to be deliv-
ered.

Rationale for Interpretation 
It was the clear intent of the committee that two processes which pass information back 
and forth across a pipe would both be able to progress properly. A historical example of 
this situation is the implementation of the desk calculator bc, which converted users infix 
statements to the Reverse Polish Notation accepted by another desk calculator program 
dc, sent the expression to dc via a pipe, and expected the result to be returned via an-
other pipe from dc. An implementation which could not support this implementation of 
bc would be non-conforming.

Editorial note (not part of this interpretation) 
Consider adding in the next edition of .1 an explicit sample program that passes infor-
mation back and forth thru a pipe, such that the clear intent is expressed in that pro-
gram. A conforming application would have to execute that program (as well as meet 
the current requirements).


