
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for 
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print 
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE 
Standards Department for the appropriate license. Use of the information contained in 
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #58 
Topic: fseek and ESPIPE Relevant Sections: 8.1

When the	 underlying open	 file descriptor	 references a pipe or FIFO,	 then a call 
to fseek() sets errno to ESPIPE, returns a non-zero value	 and the	 value of the file 
pointer is unchanged.

This particular issue has uncovered many	ambiguities within POSIX and within	 many 
implementations. The following is a list of questions and some insights that may have a 
bearing on the issue.

(1) Is a	 pipe or	 FIFO a device or a special file	type? 
There seems to be some sloppy wording in	 POSIX regarding “devices	 which are 
incapable of seeking”	 and whether these include pipes and FIFOs.	 The definition of 
a device is “A computer	peripheral or an object	 that appears to	 the application as such” 
and	 that of	 a FIFO is “A FIFO special file is a type of file”.	 We understand from 
these definitions that	 a pipe or a FIFO cannot	be classified as a device. If this is incor-
rect, then the behaviour	 of fseek() on a pipe or FIFO is implementation defined and 
just about any behaviour is	 acceptable after an attempt to perform a file positioning	
operation on a pipe or FIFO. We understand that the	 behaviour of a file positioning	oper-
ation on a pipe or FIFO is well defined to indicate an ESPIPE error.

(2) How does a file positioning operation on a pipe or FIFO affect subsequent read oper-
ations? 
POSIX states in the definition of file offset “There is no file offset specified for a pipe	
or FIFO”. In tests for lseek() this has	 been understood	 by the various test suite de-
velopers to mean that subsequent reads	 from the pipe or FIFO are	 unaffected by 
the attempted lseek(), and this test has not given any problems. POSIX.3.1 Draft 13 has 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

extrapolated this	 text for lseek() into the	equivalent assertion for fseek(). This extrapo-
lation has a further problem in that a stream does not have	 file offset but	 has a 
file-position indicator. So does the	 POSIX.3.1 assertion really refer to the	 file position	
indicator or to	 the file pointer. The X/Open POSIX.1-90 test suite understands this 
statement	 to be the equivalent of the statement for lseek(),	 in that	 subsequent 
reads from the stream are unaffected by the attempted fseek().	 This test, however, is 
exhibiting problems and is the subject for this interpretation.

(3) Could the assertion be refering to the underlying file descriptor? 
If this were the	 case, then it would be necessary to access the pipe	 and FIFO both 
from a stream (to	undertake the fseek())	 and from a file	 descriptor (to undertake the 
read()) to ensure that data loss	 did not	 occur at the file descriptor level. Unfortu-
nately,	 the synchronisation rules for file	 handles	 does not provide a mecha-
nism for handing off file	 handles	 for buffered pipes. This makes it impossible 
to produce a POSIX conforming	 application to test this understanding of the asser-
tion, though this	 doesn’t seem to deter all test suite authors! The fact that such	 an 
assertion results in a pass is not entirely a surprise and only serves to prove how	 well 
behaved implementations are when the	 behavior is undefined.

(4) Could the assertion be refering to the continued ability to read data from the stream 
without any	side-effects? 
The X/Open POSIX.1-90 test suite believes this to be the case. While it is accepted that 
the POSIX does not explicitly state	 that this is the case, it seems	valid to argue that 
side-effects that exhibit data loss after an error condition has been	 raised should be 
documented. This data loss seems particularly dangerous since there is no means of	
recovery once an application has erroneously undertaken an fseek() on	a stream. Howev-
er, these arguments have to be balanced against the fact that there is no explicit	 men-
tion	 in the POSIX and in such cases the implementation could be argued to have a	
degree of freedom. The X/Open proposed resolution is: An fseek() on a pipe or FIFO 
should return ESPIPE and results in undefined behaviour to the stdio stream.

Interpretation Response 
An fseek() on a pipe or FIFO need not return an error. If the fseek() detects the error, 
then it must fail with errno set to ESPIPE. The POSIX.1 standard does not specify the 
state of the stream after such an error occurs.

The language in POSIX.1 does not support the cited assertion from 2003.1. The lan-
guage in POSIX.1 could be clearer, and this concern over clarity has been forwarded to 
the sponsors.

Rationale for Interpretation 
None.


