IEEE STANDARDS ASSOCIATION <$IEEE

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #48
Topic: last close() on terminal Relevant Sections: 7.1.1.11 Classification: No change

POSIX.1-1990 section 7.1.1.11 Closing a Terminal Device file states:

The last process to close a terminal device file shall cause any output to be sent to the
device and any input to be discarded.

Is it required behaviourthat in the case that output has previously been suspended
by a call to tcflow(), that the close() will allow output to be restarted or is it permissi-
ble behaviour for the data to be discarded? X/Open proposes that close() will allow
output to be restarted.

Interpretation Response

The standard does not specify that a close() on a terminal device file include the equiva-
lent of a call to tcflow(fd, TCOON). The language of 7.1.1.11 allows, but does not require
such an action.

An implementation that discards output at the time the close() is called, after report-
ing in the return value to the write() call that the data was written does not conform to
POSIX.1.

Rationale for Interpretation

Section 7.1.1.8 clearly allows for some buffering to occur on terminal output, but the
standard leaves unspecified the detailed behavior of this buffering and its interaction
with program-directed flow control (tcflow()) and externally generated flow control. It is
worth reiterating that an application has functions such as tcdrain(), tcflush(), and tc-
flow() available to obtain the detailed behavior it requires.

445 Hoes Lane, Piscataway, NJ 08854 USA « +1 732 981 0060 * +1 732 981 0027 * standards.ieee.org
Page 1

IEEE STANDARDS ASSOCIATION <$IEEE

At the time of last close() on a terminal device, an application relinquishes any ability
to exert flow control via tcflow(). Contrary to B.7.1.1.11, the implementation is never
permitted to “cause a flush of pending output”, if “flush” is taken to mean “discard”. In
the situation described, the two options are “resume output and wait for it to drain” and
“block (until interrupted by a signal)”. External flow control could cause the first option
to degenerate into the second. One overall intent is that a naive program can have its
output directed to a terminal device without danger of truncation from close() being
called immediately after successful return from the last write().

445 Hoes Lane, Piscataway, NJ 08854 USA « +1 732 981 0060 * +1 732 981 0027 * standards.ieee.org
Page 2

