
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #37
Topic: off_t error messages Relevant Sections: not specified Classification: No
change

off_t has a finite upper bound. No error conditions are specifically identified for functions
that attempt to exceed the inherent limit of off_t. Take for example lseek(fildes, 2**31-
2,SEEK_SET);write(filedes,’abcd’,4). Do any characters get written? Page 119, lines 204-
205 imply 2 bytes would get written and subsequent call would get EFBIG. When more
than one binding is supported, is EFBIG set to a size that all binds on the implementa-
tion can cope with? What is returned from lseek() and fcntl() when the resulting offset
exceeds the size of off_t? I assume, EINVAL.

What must be documented in the Conformance Document when underlying file file sys-
tems and other bindings permit different limits than the ‘C’ binds? (Paul Wanish IBM)

Interpretation Response
There is an error for lseek() that applies to this situation:

[EINVAL] The whence argument is not a proper value, or the resulting file offset would
be invalid.

The result of attempting a write() that would cause the file offset to exceed the maxi-
mum value that can be stored in an object of type off_t is unspecified. Although IEEE
Std 1003.1-1990 states (page 119, lines 195-196) that:

Before successful return from write(), the file offset shall be incremented by the number
of bytes actually written.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

There is no error specified for the case where advancing the file pointer would produce
an offset with no well-defined value. Since write() does not return this offset and need
not examine it in this case, there is no requirement that an error condition be detected.
This also applies to the interfaces from the C Standard that can extend the size of a file
(fwrite(), fprintf(), etc.).

The description of the [EINVAL] error condition for fcntl() with the F_GETLK, F_SETLK,
or F_SETLKW flag refers only to invalid data in the structure passed to fcntl(). The only
way to set a lock on the portion of a file beyond the size that can be represented in type
off_t is to set l_len to 0 to lock to the end of the file, and that is the only way that infor-
mation that refers to that portion of the file can be returned by fcntl(). Issues related to
harmonizing semantics with standards other than the C Standard are beyond the scope
of IEEE Std 1003.1-1990. There is no requirement in IEEE Std 1003.1 that a mismatch
in the ability to handle file sizes between POSIX.1 and the C Standard be documented.
Note that the C Standard provides interfaces to be used in manipulating the file offsets
for very large files (fgetpos(), fsetpos()).

Rationale for Interpretation
POSIX.1 does not specify a specific relationship among the maximum file size, {SSIZE_
MAX}, the maximum value that can be stored in an object of type off_t, and the storage
capacity of a particular medium or filesystem. Page 119, lines 204-205 refer to the case
where there is no more room for data, which is not necessarily the same as the case
where a write would cause the offset of the file pointer to exceed the maximum value
that can be stored in an object of type off_t.

An application that needs to use file offsets that are larger than can be represented in
type off_t should, if possible, use the fgetpos() and fsetpos() interfaces from the C Stan-
dard rather than using lseek().

It is suggested that a future revision of IEEE Std 1003.1 specify the behavior of fcntl()
when used on files whose sizes cannot be represented in variables of type off_t. This
condition can arise when file systems are mounted from a remote POSIX.1 system on
which off_t is a larger type than on the local system.

