
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #71
Topic: fcntl Relevant Sections: 6.5.2

We hereby request an official binding interpretation concerning the following items per-
taining the POSIX.1-1990 standard. Section 6.5.2, page 122, lines 341-345 Table 6-5
page 123, lines 381-388 F_GETFL page 124, lines 389-295 F_SETFL 6.5.2.2 fcntl() De-
scription F_GETFL and F_SETFL talk about setting and getting the flags associated with
O_APPEND and O_NONBLOCK, but for many file types no additional semantics for these
flags are otherwise required to be associated with the file types anywhere else in the
standard.

The semantics of O_APPEND appear to only really apply to the write() function. Under
write() it says “the file offset shall be set”, but just before that it describes files “not
capable of seeking” “shall start from the current position”. The implication appears to
be O_APPEND can only have effect on seek capable files, since on files not capable of
seeking the file offset can’t be set. POSIX.1 defines regular files as randomly accessible
sequence of bytes, but it does not specifically say that lseek() is the method of randomly
accessing those bytes, nor explicitly that a regular file is “capable of seeking”. However,
the common inference is that regular files are capable of seeking by being defined as
randomly accessible and thus O_APPEND must apply to them. The standard only ap-
pears to require that regular files support O_APPEND.

If an implementation defines the other file types as not being capable of seeking and
thus O_APPEND has no effect, is it permissible for the implementation to ignore the
fcntl(fd, F_SETFL, O_APPEND) for such files and thus have fcntl(fd, F_GETFL) never
return the O_APPEND flag since it has no meaning? Similary, the standard is very explicit
about the meaning of O_NONBLOCK for FIFO special files and allows the support of non-
blocking opens, reads and writes for other file types.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

If an implementation defines the other file types as not supporting nonblocking opens,
reads or writes, is it permissible for the implementation to ignore the open(path, O_
NONBLOCK) and fcntl(fd, F_SETFL, O_NONBLOCK) for such files and thus have fcntl(
fd, F_GETFL) never return the O_NONBLOCK flag since it has no meaning? In particu-
lar, could the following be conformant behavior: regular_fd = open(regular_path, O_
RDONLY | O_APPEND | O_NONBLOCK). fcntl(regular_fd, F_GETFL) & ~O_ACCMODE
yields O_APPEND. char_fd = open(char_path, O_RDONLY | O_APPEND | O_NONBLOCK
). fcntl(char_fd, F_GETFL) & ~O_ACCMODE yields O_NONBLOCK. block_fd = open(
block_path, O_RDONLY | O_APPEND | O_NONBLOCK). fcntl(block_fd, F_GETFL) &
~O_ACCMODE yields 0. fifo_fd = open(fifo_path, O_RDONLY | O_APPEND | O_NON-
BLOCK). fcntl(fifo_fd, F_GETFL) & ~O_ACCMODE yields O_NONBLOCK. dir_fd = open(
dir_path, O_RDONLY | O_APPEND | O_NONBLOCK). fcntl(dir_fd, F_GETFL) & ~O_AC-
CMODE yields 0. fcntl(regular_fd, F_SETFL, O_APPEND | O_NONBLOCK) returns 0.
fcntl(regular_fd, F_GETFL) & ~O_ACCMODE yields O_APPEND. fcntl(char_fd, F_SETFL,
O_APPEND | O_NONBLOCK) returns 0. fcntl(char_fd, F_GETFL) & ~O_ACCMODE yields
O_NONBLOCK. fcntl(block_fd, F_SETFL, O_APPEND | O_NONBLOCK) returns 0. fcntl(
block_fd, F_GETFL) & ~O_ACCMODE yields 0. fcntl(fifo_fd, F_SETFL, O_APPEND | O_
NONBLOCK) returns 0. fcntl(fifo_fd, F_GETFL) & ~O_ACCMODE yields O_NONBLOCK.
fcntl(dir_fd, F_SETFL, O_APPEND | O_NONBLOCK) returns 0. fcntl(dir_fd, F_GETFL) &
~O_ACCMODE yields 0.

Interpretation Response
The standard clearly states the requirements for the fcntl() function , and such an imple-
mentation as described in the interpretation request is not conforming.

Rationale for Interpretation
The standard has no provision for failing to set or clear the file status flags via fcntl
based on the type of the file.

