
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for 
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print 
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE 
Standards Department for the appropriate license. Use of the information contained in 
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #130 
Topic: 1003.1q Relevant Sections: 21.3.14 PASC

Extracting filters from trace logs: If the stream full policy is POSIX_TRACE_LOOP, it may 
happen, that the latest POSIX_TRACE_FILTER event is overwritten and that there is no 
POSIX_TRACE_FILTER event left in the trace stream. posix_trace_get_filter() doesn’t 
work on trace logs (Section 21 lines 1378 ...1382). Thus, we can’t reconstruct the event 
filters from the trace log. They are neither readable from an POSIX_TRACE_FILTER event 
(because there is no such event) nor from the meta data of the trace log (because there 
is no interface). Is this a correct interpretation of the standard?

Interpretation Response 
The original question is not clear as to whether the concern is over a POSIX_TRACE_FIL-
TER event being overwritten in a trace stream (because the policy is POSIX_TRACE_
LOOP) or being lost from a trace log (when the trace stream policy is POSIX_TRACE_
FLUSH and a log overrun occurs and events are lost from the log, one of which may be 
a POSIX_TRACE_FILTER event). We need some clarification on that. The former is not 
really an issue, because the filters associated with an active trace stream are retrievable 
out of band (posix_ trace_get_filter()).

Therefore lets assume the latter (note however that POSIX_TRACE_LOOP policy plays 
no part in this unless the application is explicitly attempting to keep the trace stream 
flushed to a trace log with calls to posix_trace_flush(), since POSIX_TRACE_LOOP is not 
required to ever flush on its own): It is a correct interpretation that you can’t reconstruct 
the trace filters from the trace log if it contains any POSIX_TRACE_OVERFLOW events, 
since one of the lost events may have been a POSIX_TRACE_FILTER event. This does not 
represent a defect in the standard, only an implementation’s failure to be able to flush 
a highly active (FLUSHING) trace stream to a trace log without losing events, while the 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

trace controller is changing the set of events filtered.

Rationale for Interpretation 
Francois Riche’s response follows: There are two levels of storage to memorize trace 
event identifiers and their arguments: - the first one is the trace stream, we can guess 
this one is real memory with small size and play the buffer role if it is associated with a 
trace log, - the second one is the trace log, we can guess this one is mass-storage, and 
the size is big enough considering the duration of tracing or the volume of trave events 
to memorize.

Therefore, the strategy for these two types of trace event storage are generally differ-
ent. Maybe as you imagine, the trace stream is looping, and the associated trace log is 
enough big to memorize your tracing sample. We guess the rate of trace events is not 
too high and the trace stream can be flushed to the trace log and all trace events can be 
flushed in the trace log before the trace stream loops. Because the POSIX_TRACE_FIL-
TER is a trace event, when the trace stream is terminated, you can open the trace log, 
read the trace events, especially the POSIX_TRACE_FILTER events and know the set of 
trace event types even if this one has changed during the tracing sample.

On the other hand, this is right, these trace events are lost in the trace stream, but 
stored in the trace log. In the case of a trace stream associated with a trace log, as you 
can read only the trace log, so you can retrieve the filter information. Forwarded to In-
terpretations Group: 27 Feb 2001 Proposed resolution: 21 March 2001 Finalized: April 5 
2001


