
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #34
Topic: portable use of POSIX constants Relevant Sections: 2.9.4 Classification: Edi-
torial defect

A question has been raised with regard to the portable use of the “#if” ANSI C construct
in POSIX.1 portable applications when used with the symbols defined in ISO/IEC 9945-1,
page 39, Table 2-11.

Ex:
#ifdef _POSIX_VDISABLE
#if _POSIX_VDISABLE == -1
...
...
#endif
#endif

Does the example provide acceptable code for POSIX.1 “portable” conforming applica-
tions? In other words, will the #if in the example above always compile without error?
We believe the correct response is YES.

Rationale:
POSIX.1, page 39, line 1148 says:
“If any of the constants in Table 2-11” ... We interpret The term “constant” to mean
a constrained “integral constant expression” which allows the identifiers in Table 2-11
to be used with the syntax “#if” in ANSI C constructs. In other words, using the ter-
minology of Section 3.8 of the ANSI C Standard, an identifier in Table 2-11 must have
a replacement list. In this case, the replacement list is a constrained integral constant
expression (see Section 3.8.1 of the ANSI C Standard). The language of the ANSI C

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

Standard gives a more precise specification of the same concepts as described in Ker-
nighan and Richie (1978) Section 12.3 and Section 15. Thus, this syntax is also pres-
ent in common C. This interpretation also aligns directly with drafts P1003.1LIS/D2 and
P1003.16/D2.

P1003.1LIS/D2, page 78, lines 2598-2599.
“language bindings shall specify how an application can distinguish these cases at com-
pile time.”

POSIX.1, page 111, lines 1005-1007. P1003.16/D2, page 134, lines 788-791.
“The value returned shall not be more restrictive than the corresponding value DE-
SCRIBED TO THE APPLICATION WHEN IT WAS COMPILED with the implementation’s
<limits.h> or <unistd.h>.” (emphasis added as capitalization)

This language says that at compilation time, the identifiers of Table 2-11 when defined in
the header <unistd.h> are available for interrogation. Furthermore, the fact that Section
2.9.3 of POSIX.1 refers to “Compile Time Symbolic Constants” and Section 2.9.4 refers
to “Execution-Time Symbolic Constants” does not imply that the identifiers in Table 2-11
are NOT portably “usable” at compile time. We feel that the reason for differentiating the
identifiers in Table 2-10 and Table 2-11 is to highlight the fact that the identifiers in Table
2-11 need not be specified by an implementation at compile time since they can always
be obtained from pathconf() and fpathconf().

Nevertheless, for those implementations where the value of an identifier in Table 2-11 is
included in the header, the usefulness of this header value at RUN-TIME is limited. Even
though it indicates the value of the identifier for all applicable files, the pathconf() code,
to check for each applicable file, must be an integral part of the portable application
even when this pathconf() code is not executed as a result of obtaining at run-time the
identifier value from the header.

By using these values at COMPILE-TIME, a portable POSIX.1 application can avoid load-
ing all pathconf() related code associated with a symbol in Table 2-11 when the symbol
is defined. This allows some credence to the existence of these symbols in the header.

Interpretation Response
The example code in the request is not acceptable for a POSIX.1 conforming portable
application. In other words, the standard does not require a conforming implementation
to compile the #if in the example without error.

Rationale for Interpretation
The standard makes no requirement that the constant _POSIX_VDISABLE be a prepro-
cessor number. The requirements relating this constant in section 2.9.4 relate only to
use at execution time. It is understandable why an application might like to be able to
use _POSIX_VDISABLE as a preprocessor constant. The wording in section 2.9.4:

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

If any of the constants in Table 2-11 are defined to have value -1 in the header
can suggest, on casual reading, code like the following to minimize size and optimize
efficiency for each implementation:

#ifdef _POSIX_VDISABLE
#if _POSIX_VDISABLE == -1
 /* code that assumes no vdisable capability */
#else
 /* code that assumes vdisable capability */
#endif
#else
 /* code that uses pathconf() to determine vdisable capability */
#endif

However, there is no wording in the standard to actually back up that suggestion, and
silence on the part of the standard means no requirement.

There are reasons why an implementor might want to define a value that is not a pre-
processor number, such as including a type cast to avoid problems in comparing the val-
ue to a member of the c_cc array member of a termios struct (which is constrained by
the standard to be an unsigned integer type). Since no wording in the standard prohibits
this, it is implicitly permitted.

Thus, rather than the above fragment, an implementation could include code like:

#ifdef _POSIX_VDISABLE
 if (_POSIX_VDISABLE == -1) {
 /* code that assumes no vdisable capability */
 } else {
 /* code that assumes vdisable capability */ }
#else
 /* code that uses pathconf() to determine vdisable capability */
#endif

Of course it is generally simplest, though potentially less efficient, to just write the code
that uses pathconf().

