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Interpretation Request #14 
Topic: format of directory entries, use of read/write Relevant Sections: 5.1.1 Classifi-
cation: No change required

In 5.1.1 Format of Directory Entries, page 83, line 10: 
“The internal format of directories is unspecified.”

In 5.3.1.4 Errors [Open a File], page 90, lines 256-257: 
“[EISDIR] The named file is a directory, and the oflag argument specifies write or read/
write access.”

Traditional implementations permitted the use of the read() function on directory files, 
so no error condition is defined in POSIX.1 for this case. May a conforming application 
open a directory file and read it using the open() and read() functions?

Interpretation Response 
Yes, a conforming application can invoke read() on a directory, however, the result of 
any such read() is unspecified, and may be an error return, including [EISDIR].

Rationale for Interpretation 
Nothing in the standard prevents an application from using the open() and read() func-
tions on a directory, but an application which uses knowledge of a particular implemen-
tation’s format for directories is using a non-portable extension. Implementations are 
free to return anything they want from a read() to a directory. For example, read() could 
always return zero, or -1 with some appropriate errno.


