
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #1
Topic: rename() behavior Relevant Sections: 5.5.3.3

Ambiguity in 5.5.3.3 - rename() The words “if either exists” (page 100 line 589) appears
to exclude the case where the old and new file did not exist prior to the function call. Is
it not the case that if the function call fails the implementation is always required to en-
sure that both the old and new file states are identical to prior to the call and neither is
either created or modified?

A further consideration were implementations that allow rename() to be used across file
systems by copying rather than linking, and where cleanup and atomicity is critical.

Interpretation Response
If a call to rename(old, new) returns -1, then the implementation shall in all cases en-
sure that neither old nor new is created or modified. In particular, if neither old nor new
exists prior to the call to rename(), then neither old nor new shall be created by the
call. Implementations that support rename() across file systems are bound by the same
semantic requirements for such a call to rename() as for a call to rename() within a file
system.

Rationale for Interpretation
As is pointed out in the interpretation request, the standard is quite clear and unambigu-
ous in the case where either old or new (or both) exist prior to the call. The only case at
issue is when neither exists. The language in Section 5.5.3.3 (which is new in the 1990
revision of the standard) states:

If -1 is returned, neither the file named by old nor the file named by new, if either ex-
ists, shall be changed by this function call.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

This does not explicitly state what must occur when neither old nor new exists. The in-
terpretation is based on Section 5.5.3.2 (Description), which states (in part):

The rename() function changes the name of the file. The old argument points to the
pathname of the file to be renamed. The new argument points to the new pathname of
the file.

The rename() function is also specified in the C Standard (X3.159-1989), which in Sec-
tion 4.9.4.2 states (in part):

The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed to by new. The file named old
is no longer accessible by that name.

Thus, rename() changes file names, but does not change files. Note that in the descrip-
tions of other functions that resolve pathnames but do not create file system objects,
the semantics do not explicitly state that the named file must not be created. Yet to cre-
ate such a file would be considered a semantic error. Examples include unlink(), stat(),
chown() and pathconf(). On the other hand, those interfaces that are explicitly designed
to create file system objects (such as open(), mkdir() and mkfifo()) document that if -1
is returned, nothing is created. Given the description of the rename() function in 9945-
1 and X3.159, it falls into the same category as unlink(), stat() etc. Since file creation
is not part of the semantic requirements of rename(), there is no need to document the
implicit requirement that a call that fails must not create any extraneous files.

