
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #54
Topic: extern int errno Relevant Sections: 2.4 Classification: No change

On page 23, section 2.4, on line 502, the POSIX standard specifies the attributes that
are required for the ‘errno’ variable. The lines states: extern int errno;

This is expressed as a specific ‘C’ declaration. I believe that this is overly specific, and
only represents a short hand notation. Other areas within this standard do not use this
format, as in the ‘stat’ structure in section 5.6.1.

I believe that the description should be spelled out as being an expression represent-
ing an assignable integer variable with global scope or expands to a modifiable lvalue of
type int

This will permit the declaration that is specified, while also permitting other implemen-
tations which satisfy the same need. To get the values that are returned in this variable,
<errno.h> must be included, and that is typically where the ‘errno’ variable is typically
defined.

This same topic has also come up in the POSIX.4a working group and is mentioned in
the latest drafts in section 2.5.2. They propose specific alteration of the standard; I pro-
pose an interpretation that permits flexiability in the declaration and may also solve the
problem the P1003.4 group is attempting to solve.

Attached is a note that I received from one of the members of the P1003.1 Working
Group. It gives a different perspective on the problem and the history of the text in the
standard. (Paul Wanish)

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

Text of Note
The POSIX C bindings should use exactly the ANSI C definition of errno, which says that
errno “expands to a modifiable lvalue of type int.” This ALLOWS an implementation to do
something like:

#define errno (*__errno_val)
extern int *__errno_val;

but also allows the more traditional definition of just “extern int errno”. The main differ-
ence between POSIX.1-1990 and ANSI C is that POSIX explicitly allows an application to
contain the statement: extern int errno;

I believe that this would even be allowed if the application didn’t include <errno.h>. This
is different than ANSI C, and means:
(1) A straight ANSI C application still is OK under POSIX.1.
(2) An implementation that sticks with ANSI C is OK under POSIX.1.
(3) An application that includes “extern int errno” is OK under POSIX.1 but not ANSI C.
(4) An implementation that defines errno as a preprocessor define is OK under ANSI C
but not POSIX.1.

This definition was put into POSIX.1-1988 primarily to accomodate Common Usage C
implementations and existing applications. There existed (and still exist?) many histor-
ical applications that didn’t bother to include <errno.h>, but just defined errno them-
selves. This was common practice, and the committee could not reach a concensus on
requiring them to change. (Also, frankly, I don’t think that anyone had any idea of why it
might be a good idea to define things the ANSI way, at least in the U**X world.) The “no
substantive change” rule precluded this being changed in -1990.

However, time has passed. ANSI compilers are edging out older compilers, and the dis-
advantages of the POSIX definition of errno is becoming clear. It’s time to change it.

Interpretation Response
IEEE Std 1003.1-1990 specifies that extern int errno; is the correct declaration for errno.
This is not a shorthand for a different meaning.

Rationale for Interpretation
The standard means exactly what it says. This issue has been resolved in the manner
suggested by the requester in IEEE Draft Standard P1003.1a, which is now in ballot.

