
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-1990 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #66
Topic: inherited file descriptors Relevant Sections: not specified

There appears to be a hole in the standard for inherited file descriptors. Specifically, the
1003.1a standard appears not to cover the following: fd=open(“log”,1); fork(); Both par-
ent and child write N times to fd via write(fd,buf,1); parent and child terminate normally.

No seeks are done. Two aspects to this situation require clarification.

1. First, the fact that there are dependencies between I/O’s done by the two processes
needs to be documented. For example, an lseek() done by the parent affects the child.

2. In the absence of error conditions in above example, should ***exactly*** 2*N bytes
be written to “log”? At issue here is the atomicity of write(). Would a conforming imple-
mentation be allowed to do the following on occasion: parent write data to byte K child
write data to byte K parent updates file position to K+1 child updates file position to K+1
and hence would write ***less than*** 2*N bytes to “log”? Or, is the combination of
writing and updating the file position atomic?

Interpretation Response
(1)This is documented. See fork() page 41 lines 19-21; also see open file description on
page 16 lines 242-247. (2) The standard does not speak to this issue, and as such no
conformance distinction can be made between alternate implementations based on this.
This is being referred to the sponsor.

Rationale for Interpretation
None.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

Editorial Note (not part of the interpretation)
The proposed revision IEEE Draft 1003.1a has text to address point 2 - atomicity of
writes.

