

## Automotive Remote Direct Memory Access (ARDMA) in a Software Defined Vehicle Architecture

Markus Jochim (presenter), Steve DiBella, Sudhakaran Maydiga, Nithya Somanath, Khaja Shazzad, Yuchen Zhou

General Motors, 10/16/2024

#### **SDV Challenges**

#### SDV's big promise:

Centralization simplifies updates, in-market enhancements. → Faster time to market.



#### SDV Latency challenges

- Centralization leads to longer paths w increased E2E latency
  Sensor S → network → Zone Module → network → Compute → network → Zone Module → network → Actuator A
- E2E Latency contributors: Network, Functional Software, Com Stack Software
- $\circ$  Task loops in Central Compute and Zone Modules drift in and out of phase (unless synced)



Low Latency Real Time Control Use Case Examples

- Steer by Wire
- Anti-lock Braking
- Magnetic Ride (active suspension)

# Sub-Millisecond End-to-End latency requirements \*



## Communication Stack significantly contribute to E2E Latency

## Example:

- Traditional Com Stack (<u>not</u> RDMA).
- Single NXP S32K Core, AUTOSAR based, COM running with 1ms task period.
- One 128-byte frame per loop. No functional software.



Measured Com Stack TX + RX latency contribution: ≈ 950µs



## **ARDMA reduces Latency and MCU Utilization**

## No ARDMA



- Generally, more Copy & Data Manipulations
- Context Switching

RESEARCH & DEVELOPMENT

Higher MCU Utilization

## ARDMA



- No traditional COM Stack
- True Zero Copy
- Fewer Context Switches
- Lower MCU Utilization

## **ARDMA Basic Principles**

- Key Operations:
  Remote Write
  Remote Read
- Transport Protocol in HW



**Example: ARDMA Remote Write** 



## Simplified Example: ARDMA Remote Write (1/6)





Blue: Software Green: Hardware

## Simplified Example: ARDMA Remote Write (2/6)





RIGHT

#2:



LEFT

## Simplified Example: ARDMA Remote Write (3/6)



RESEARCH &

DEVELOPMENT



000

**B2** 

9

## Simplified Example: ARDMA Remote Write (4/6)



LEFT

**RESEARCH &** 

DEVELOPMENT





- 1) Writes local data: B1: 11111
- 2) Creates a write work request W <sup>(\*1)</sup>
- 3) Calls post\_send(W)

## Simplified Example: ARDMA Remote Write (5/6)



RIGHT



- 3) Transport data + ARDMA header
- 4) Remove W from Queue

## Simplified Example: ARDMA Remote Write (6/6)





RIGHT

## Right Engine:

- 5) Transport receives B1 data + header
- 6) Extracts Mem Reg number (#1) from ARDMA header
- 7) DMA writes data to B1

12

LEFT

## Work Request ACK messages

• Optional:

## ACK for successful read/write work requests

- ACK is part of the hardware transport protocol
  - Very efficient!
  - Software Com Stack ACKs are <u>not</u> efficient Eth Controller receives message -> Software Stack receives message -> Software Stack sends ACK message -> Eth Controller sends ACK



From Data Center RDMA to Automotive RDMA (ARDMA) (1/2)

- Formal ARDMA spec written from scratch.
- Spec Version 0.5
  - Purpose: Demo latency & MCU load reductions
  - Two Implementations: i) FPGA ii) Software (\*1)
  - Don't copy a word! Don't copy a line of code!
- Lightweight spec for embedded platforms & control V0.5: 16 functions, ≈60 pages, Spec. 100% done <sup>(\*2)</sup>



## From Data Center RDMA to Automotive RDMA (ARDMA) (2/2)

## Spec Version 1.0

- $\circ~$  Address automotive requirements not covered by Data Center RDMA
- $\circ~$  Exploit optimizations possible for automotive control use cases
- $\circ~$  50% done. Expecting about 100 pages total.

## Some Examples

- Automotive cyber security
- $\circ~$  Atomic operations for control
- Low Latency notifications
- Periodic work requests



ZedBoard: Xilinx Zynq-7000 (ARM Cortex-A9 & FPGA)



## Latency Measurement Setup (1/2)

# UDP Send/Receive





## Latency Measurement Setup (2/2)

UDP Send/Receive

versus

# ARDMA Remote Write





## E2E Latency of ARDMA vs UDP

- Cycle accurate Verilog simulation of ARDMA FPGA implementation
- Measurements with different payloads on a 'clean system'



- Simulation doesn't account for DRAM load created by other MCU tasks
- Future work: Transition from Verilog simulation to FPGA hardware.
  - Compare performance in presence of functional software (MCU load)



## E2E Latency of Data Center RDMA vs. UDP





- ➢ Higher latency for both RDMA and UDP compared to previous slide.
- Relative RDMA vs UDP latency is similar to relative ARDMA vs. UDP latency from previous slide.

Collaborate to make ARDMA useful to our industry...

# ARDMA will benefit from broad adaptation and support

## Interested in discussion and collaboration? Just reach out!

markus.jochim@gm.com

