Enabling Time-Aware Shaper on Half-Duplex Ethernet PLCA Multidrop

David A. Nascimento** (dan@cin.ufpe.br)
Steffen Bondorf£ (steffen.bondorf@ruhr-uni-bochum.de)
Divanilson R. Campelo# (dcampelo@cin.ufpe.br)

#Universidade Federal de Pernambuco – Brazil
*Instituto Federal de Pernambuco – Brazil
£Ruhr University Bochum – Germany
Agenda

• Introduction
• Time-Aware Shaper (TAS)
• 10BASE-T1S
 • Physical Layer Collision Avoidance (PLCA)
• TAS + PLCA
• Full-duplex switched Ethernet vs Half-duplex PLCA Multidrop Ethernet
 • Results
• Conclusion
 • Future work
Introduction

Most Ethernet implementations today
• Switched networks with full-duplex links

Problems
• They may be costly for some use cases, mainly automotive
• Over 90% of the current internal communication links need less than 10 Mbps\cite{1}
• 100BASE-T1 is not cost-efficient for replacing CAN (Controller Area Network) or CAN-FD (CAN with Flexible Data Rate)

Solution
• 10BASE-T1S

Time-Sensitive Networking (TSN)
• Time Synchronization, Ultra reliability, Bounded low latency, and Dedicated Resources & API

TSN includes IEEE 802.3Qbv
• Time-Aware Shaper (TAS)
• Ultra-low latency, jitter, and loss
• TAS is a solution for deterministic systems
 • Real-time and safety-critical applications

Introduction

The integration of TAS and 10BASE-T1S PLCA enables many possibilities

- No gateways
- End-to-end transmissions of scheduled traffic Ethernet flows
- All-Ethernet Vehicle

<table>
<thead>
<tr>
<th>IEEE 802.3 (PHY)</th>
<th>802.3bw</th>
<th>100BASE-T1</th>
<th>1000BASE-T1</th>
<th>MultiGig</th>
<th>10BASE-T1S</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1 TSN (MAC)</td>
<td>AS</td>
<td>Qav</td>
<td>...</td>
<td>Qat</td>
<td>Qbv</td>
</tr>
<tr>
<td>Qbu</td>
<td>Qci</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Time-Aware Shaper

• Gate Control List (GCL)
 • Clock-based open-close gate scheduling for all priority queues

• Scheduled Traffic (ST)

• Time slots for transmissions (windows)
 • Exclusive windows
 • Lowest delay bounds
 • More complex to provide (NP-hard)
 • Similar to Time Division Multiple Access (TDMA)
 • Desired in automotive
 • Overlapping windows
 • Low delay bounds
 • More simple to provide
 • Strict Priority (no preemption)
 • Not desired in automotive
Time-Aware Shaper

Ethernet interface

GCL scheduling

Gate states over time

Gate Control List (GCL)

<table>
<thead>
<tr>
<th>Time ID</th>
<th>Gate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000100</td>
</tr>
<tr>
<td>1</td>
<td>10001000</td>
</tr>
<tr>
<td>2</td>
<td>00010000</td>
</tr>
<tr>
<td>3</td>
<td>01000000</td>
</tr>
<tr>
<td>4</td>
<td>01001000</td>
</tr>
<tr>
<td>5</td>
<td>00001000</td>
</tr>
<tr>
<td>6</td>
<td>00100000</td>
</tr>
<tr>
<td>7</td>
<td>00000010</td>
</tr>
<tr>
<td>8</td>
<td>00000010</td>
</tr>
<tr>
<td>9</td>
<td>00000000</td>
</tr>
</tbody>
</table>

GCL Hyperperiod
Time-Aware Shaper

- **Ethernet interface**
- **GCL scheduling**
- **Gate states over time**

Gate Control List (GCL)

<table>
<thead>
<tr>
<th>Time ID</th>
<th>Gate States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000100</td>
</tr>
<tr>
<td>1</td>
<td>10000100</td>
</tr>
<tr>
<td>2</td>
<td>00010000</td>
</tr>
<tr>
<td>3</td>
<td>01000000</td>
</tr>
<tr>
<td>4</td>
<td>01001000</td>
</tr>
<tr>
<td>5</td>
<td>00001000</td>
</tr>
<tr>
<td>6</td>
<td>00100000</td>
</tr>
<tr>
<td>7</td>
<td>00000010</td>
</tr>
<tr>
<td>8</td>
<td>00000010</td>
</tr>
<tr>
<td>9</td>
<td>00000000</td>
</tr>
</tbody>
</table>

GCL Hyperperiod

Overlapping

- Q_P^7
- Q_P^6
- Q_P^5
- Q_P^4
- Q_P^3
- Q_P^2
- Q_P^1
- Q_P^0

Transmission Selection

- Priority 7
- Priority 6
- Priority 5
- Priority 4
- Priority 3
- Priority 2
- Priority 1
- Priority 0

PHY
Time-Aware Shaper

• Transmissions within the open window
• The guard band is considered
• Overlapping among windows
 • In the worst case, the whole window is not available
 • Guaranteed windows must be calculated[2]

• Guaranteed window
 • Within an open window
 • No overlappings among distinct priority queues from a single interface
 • In the worst-case, a frame transmission can start anytime within a guaranteed window
 • Max length: window length – guard band length
 • Min length: zero

10BASE-T1S

- Single Pair Ethernet
- Half-duplex Multidrop
- Up to 8 nodes
- Physical Layer Collision Avoidance (PLCA)
 - Avoids frame collisions
 - Provides bounded latency
 - No more exponential random wait time from CSMA/CD due to collisions
 - CSMA/CD is a MAC feature
 - Collisions are avoided in the PHY
 - Optimal bandwidth utilization
 - No waste in transmission time
 - Guaranteeing fairness among nodes
Physical Layer Collision Avoidance (PLCA)

- Frame transmissions within a Transmit Opportunity (TO)
 - Each node has a single TO per PLCA cycle
- Two modes for transmission
 - Normal mode
 - Burst mode
- Silence when there is no frame to transmit
- Commit symbols are transmitted just before frame transmission when beacon and silence is shorter than an IFG

Shortest PLCA cycle
- Silence from all nodes
Longest PLCA cycle
- Transmissions of max frame size from all nodes

TAS + PLCA

Best of the two worlds?!

• Time-Aware Shaper
• 10BASE-T1S PLCA

Ultra-low latency, jitter, and loss on half-duplex multidrop links?!

They are cyclical but not synchronized

• TAS is TDMA-like
• PLCA is Weighted Round-Robin (WRR)-based

• Both can work together
 • Mistakes in the planning of TAS or PLCA parameters may cause packet loss or even starvation
The choice of a TAS scheduling is not an easy task
• TAS on 10BASE-T1S PLCA is harder

Deterministic systems require certification
• Performance guarantees
• Worst-case analysis
 • Deterministic Network Calculus

Providing optimal TAS scheduling is hard
• PLCA is not aware of frame priority
• All scheduled traffic flows must be compliant
• A tool is required for calculating worst-case bounds

There was neither an analytical solution nor an open-source tool for calculating the worst-case bounds of systems with TAS and PLCA

• We provide both[3]
TAS + PLCA

Worst-case: A graphical example

TAS Window (Gate open):

TAS guaranteed window:

Guaranteed window finishes earlier than TO from Node 2

Frame missed the TO of current PLCA cycle

ST frames that missed GCL cycle:
TAS + PLCA

In a worst-case situation

- A frame is transmitted **last** within a PLCA cycle composed of frames from overlapping guaranteed windows among distinct nodes
 - Worst-case WRR behavior
- **A PLCA cycle must fit within a guaranteed window**
 - Otherwise a frame can miss its open window
 - Deadline is not met
TAS + PLCA

TAS scheduling shall have few overlapping guaranteed windows among distinct nodes

Fewer overlappings
 • Shorter PLCA cycles
 • Lower bounds

No overlappings
 • The best situation
 • Lowest wait time for transmission
 • PLCA cycle is composed of a frame from the current node and silence from the other nodes
Full-duplex switched Ethernet vs Half-duplex PLCA Multidrop Ethernet

- 13 distinct TAS scheduling cases\[^2\]
 - Different overlapping scenarios, lengths of open window, open-close cycles, and priority assign
- 13 scheduled traffic flows\[^2\]
- e.g.:
 - | Frame size (bytes) | Period (\(\mu s\)) | Deadline (\(\mu s\)) |
 - | --- | --- | --- |
 - | 400 | 250 | 8908.0 |
 - | 400 | 250 | 56935.0 |
 - | 400 | 250 | 35879.0 |
 - | 400 | 250 | 170198.0 |
- Hypothetical “1000BASE-T1S”\[^3\]
 - Sum of flows bandwidth exceeds 100 Mbps
- Worst-case delay analysis
 - Network Calculus

Results

- Flow of interest (f oi)
 - As expected, there was an increase on delay bounds
 - Increase ranges from 10.7% to 27.6%³
 - Below the deadline

Full-duplex switched Ethernet vs Half-duplex PLCA Multidrop Ethernet

Results

- 5 of 13 scheduled traffic flows with source and destination ES in the same multidrop
 - All 5 flows have a reduction in delay bounds when using a single-hop PLCA multidrop instead of two hops of full-duplex links[3]
 - Decrease ranges from 16.7\% to 33.2\%[3]

Conclusion

TAS and 10BASE-T1S PLCA
• Ultra-low latency on half-duplex multidrop links
• Reliable and cheaper solution
 • Less PHYs than full-duplex switched
• End-to-end transmissions of scheduled traffic Ethernet flows
• Available models and tools for analyzing TAS scheduling over 10BASE-T1S PLCA multidrop
• “Ubiquitous Ethernet In-Vehicle Networks”

Future works
• Worst-case jitter analysis
• Analysis of more use cases:
 • Automotive networks with 10BASE-T1S
 • 10BASE-T1S PLCA without TAS
• Integration of 10BASE-T1S PLCA with other TSN protocols
 • E.g., Asynchronous Traffic Shaping (ATS) – IEEE 802.1Qcr
Thank you