IEEE-SA Ethernet & IP @ Automotive Technology Day Brazil - September 2023

Enabling Time-Aware Shaper on Half-Duplex Ethernet PLCA Multidrop

David A. Nascimento^{#*} (dan@cin.ufpe.br)
Steffen Bondorf[£] (steffen.bondorf@ruhr-uni-bochum.de)
Divanilson R. Campelo[#] (dcampelo@cin.ufpe.br)

#Universidade Federal de Pernambuco - Brazil
*Instituto Federal de Pernambuco - Brazil
[£]Ruhr University Bochum - Germany

Agenda

- Introduction
- Time-Aware Shaper (TAS)
- 10BASE-T1S
 - Physical Layer Collision Avoidance (PLCA)
- TAS + PLCA
- Full-duplex switched Ethernet vs Half-duplex PLCA Multidrop Ethernet
 - Results
- Conclusion
 - Future work

Introduction

Most Ethernet implementations today

• Switched networks with full-duplex links

Problems

- They may be costly for some use cases, mainly automotive
- Over 90% of the current internal communication links need less than 10 Mbps^[1]
- 100BASE-T1 is not cost-efficient for replacing CAN (Controller Area Network) or CAN-FD (CAN with Flexible Data Rate)

Solution

• 10BASE-T1S

Time-Sensitive Networking (TSN)

 Time Synchronization, Ultra reliability, Bounded low latency, and Dedicated Resources & API

TSN includes IEEE 802.3Qbv

- Time-Aware Shaper (TAS)
- Ultra-low latency, jitter, and loss
- TAS is a solution for deterministic systems
 - Real-time and safety-critical applications

Introduction

The integration of TAS and 10BASE-T1S PLCA enables many possibilities

- No gateways
- End-to-end transmissions of scheduled traffic Ethernet flows
- All-Ethernet Vehicle

• Gate Control List (GCL)

- Clock-based open-close gate scheduling for all priority queues
- Scheduled Traffic (ST)

• Time slots for transmissions (windows)

- Exclusive windows
 - Lowest delay bounds
 - More complex to provide (NP-hard)
 - Similar to Time Division Multiple Access (TDMA)
 - Desired in automotive
- Overlapping windows
 - Low delay bounds
 - More simple to provide
 - Strict Priority (no preemption)
 - Not desired in automotive

Ethernet interface

GCL scheduling

Gate states over time

Gate Co	Gate Control List (GCL)				
Time ID	Gate States				
0	00000100				
1	10000100				
2	00010000				
3	01000000				
4	01001000				
5	00001000				
6	00100000				
7	00000010				
8	00000010				
9	0000000				

Ethernet interface

GCL scheduling

Gate states over time

Gate Control List (GCL)				
Time ID	Gate States			
0	00000100			
1	10000100			
2	00010000			
3	01000000			
4	01001000			
5	00001000			
6	00100000			
7	00000010			
8	00000010			
9	00000000			

- Transmissions within the open window
- The guard band is considered
- Overlapping among windows
 - In the worst case, the whole window is not available
 - Guaranteed windows must be calculated^[2]
- Guaranteed window
 - Within an open window
 - No overlappings among distinct priority queues from a single interface
 - In the worst-case, a frame transmission can start anytime within a guaranteed window
 - Max length: window length guard band length
 - Min length: zero

10BASE-T1S

- Single Pair Ethernet
- Half-duplex Multidrop
- Up to 8 nodes
- Physical Layer Collision Avoidance (PLCA)
 - Avoids frame collisions
 - Provides bounded latency
 - No more exponential random wait time from CSMA/CD due to collisions
 - CSMA/CD is a MAC feature
 - Collisions are avoided in the PHY
 - Optimal bandwidth utilization
 - No waste in transmission time
 - Guaranteeing fairness among nodes

End nodes

Physical Layer Collision Avoidance (PLCA)

- Frame transmissions within a Transmit Opportunity (TO)
 - Each node has a single TO per PLCA cycle
- Two modes for transmission
 - Normal mode
 - Burst mode
- Silence when there is no frame to transmit
- Commit symbols are transmitted just before frame transmission when beacon and silence is shorter than an IFG

Shortest PLCA cycle

• Silence from all nodes

- Longest PLCA cycle
- Transmissions of max frame size from all nodes

Min distance \approx 0, max distance \approx (nodes – 1) * max packet length

Figures adapted from Figures 5.39 and 5.40 from [1] K. Matheus and T. Königseder, Automotive Ethernet, 3rd ed. Cambridge University Press, 2021.

Best of the two worlds?!

- Time-Aware Shaper
- 10BASE-T1S PLCA
- Ultra-low latency, jitter, and loss on half-duplex multidrop links?!

They are cyclical but not synchronized

- TAS is TDMA-like
- PLCA is Weighted Round-Robin (WRR)-based
- Both can work together
 - Mistakes in the planning of TAS or PLCA parameters may cause packet loss or even starvation

The choice of a TAS scheduling is not an easy task

• TAS on 10BASE-T1S PLCA is harder

Deterministic systems require certification

- Performance guarantees
- Worst-case analysis
 - Deterministic Network Calculus

Providing optimal TAS scheduling is hard

- PLCA is not aware of frame priority
- All scheduled traffic flows must be compliant
- A tool is required for calculating worst-case bounds

There was neither an analytical solution nor an open-source tool for calculating the worst-case bounds of systems with TAS and PLCA

12

• We provide both^[3]

TAS + PLCA Worst-case: A graphical example TAS

Node 0

 Q_7

 Q_3

 Q_2

 \boldsymbol{O}

3

Gate closed:	TAS Node 1	Q_3	3		
TAS window (Gate open):		Q_1			1
TAS guaranteed window:		Q_7			Guaranteed window finishes earlier than TO
Silence from Node 1:	TAS	Q_5		5	from Node 2
Silence from Node 2: Beacon:	Node 2	Q_2			
Commit: S Frame from Node 0: m		de ID: 00		0012001200 0 1 1 2	2 012300 0 1 1 200120012
Frame from Node 1: <i>m</i> Frame from Node 2: <i>m</i>	r LCA Wuitidrop ad	ccess:			
Priority $m \in [0,7]$	ST frames that missed GCL c	vcle:	PLCA cycle	Frame missed the	e PLCA cycle

1 Guaranteed window finishes earlier than TO

7

///////

GCL Hyperperiod

2 TRAN

6

In a worst-case situation

- A frame is transmitted last within a PLCA cycle composed of frames from overlapping guaranteed windows among distinct nodes
 - Worst-case WRR behavior
- A PLCA cycle must fit within a guaranteed window
 - Otherwise a frame can miss its open window
 - Deadline is not met

TAS scheduling shall have few overlapping guaranteed windows among distinct nodes

Fewer overlappings

- Shorter PLCA cycles
- Lower bounds

No overlappings

- The best situation
- Lowest wait time for transmission
- PLCA cycle is composed of a frame from the current node and silence from the other nodes

of current PLCA cycle

2

ST frames that missed GCL cycle:

Full-duplex switched Ethernet vs Half-duplex PLCA Multidrop Ethernet

• 13 distinct TAS scheduling cases^[2]

- Different overlapping scenarios, lengths of open window, open-close cycles, and priority assign
- 13 scheduled traffic flows^[2]

e.g.:	Frame size (bytes)	Period (μ s)	Deadline (μ s)	
0.0	400	250	8908.0	foi
	400	250	56935.0	
196	400	250	35879.0	
	400	250	170198.0	

- Hypothetical "1000BASE-T1S"^[3]
 - Sum of flows bandwidth exceeds 100 Mbps
- Worst-case delay analysis
 - Network Calculus

[2] L. Zhao and P. Pop and S. S. Craciunas, "Worst-Case Latency Analysis for IEEE 802.1Qbv Time Sensitive Networks Using Network Calculus," IEEE Access, vol. 6, pp. 41 803–41 815, 2018.
 [3] David A. Nascimento and Steffen Bondorf and Divanilson R. Campelo, "Modeling and Analysis of Time-Aware Shaper on Half-Duplex Ethernet PLCA Multidrop". IEEE Transactions on Communications, 71(4):2216–2229, 2023.

Full-duplex switched Ethernet vs Half-duplex PLCA Multidrop Ethernet

Results

- Flow of interest (foi)
 - As expected, there was an increase on delay bounds
 - Increase ranges from 10.7% to 27.6%^[3]
 - Below the deadline

Full-duplex switched Ethernet vs Half-duplex PLCA Multidrop Ethernet

Results

- 5 of 13 scheduled traffic flows with source and destination ES in the same multidrop
 - All 5 flows have a reduction in delay bounds when using a single-hop PLCA multidrop instead of two hops of fullduplex links^[3]
 - Decrease ranges from 16.7% to 33.2%^[3]

18

Conclusion

TAS and 10BASE-T1S PLCA

- Ultra-low latency on half-duplex multidrop links
- Reliable and cheaper solution
 - Less PHYs than full-duplex switched
- End-to-end transmissions of scheduled traffic Ethernet flows
- Available models and tools for analyzing TAS scheduling over 10BASE-T1S PLCA multidrop
- "Ubiquitous Ethernet In-Vehicle Networks"

Future works

- Worst-case jitter analysis
- Analysis of more use cases:
 - Automotive networks with 10BASE-T1S
 - 10BASE-T1S PLCA without TAS
- Integration of 10BASE-T1S PLCA with other TSN protocols
 - E.g., Asynchronous Traffic Shaping (ATS)
 IEEE 802.1Qcr

Thank you