Advanced Multigigabit Glass Optical Fiber Automotive Ethernet Link and Test Solutions

Douglas Harshbarger and Suresh Donthu Corning Incorporated

Jae-Yong Chang Keysight Technologies

ETHERNET & IP @ AUTOMOTIVE TECHNOLOGY DAY 19-20 September 2023 | São Paulo, Brazil

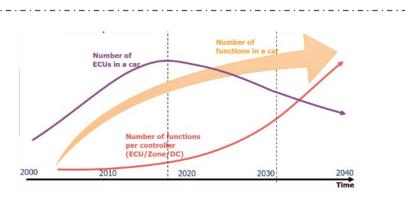
CORNING

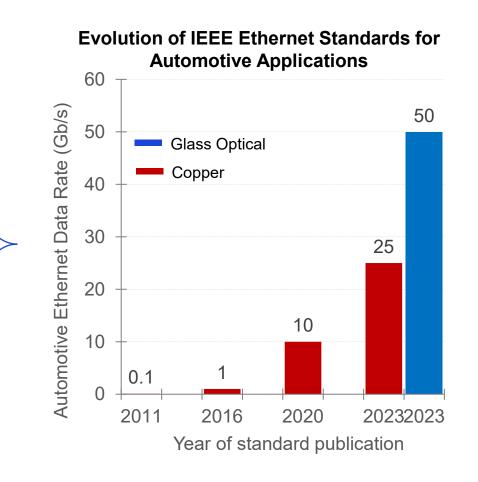
Applying Modern Glass Optical Fiber Technologies to Automotive On-Board Networks

- Emerging Automotive applications can derive significant benefit from the latest glass optical fiber technologies
- As glass fiber and automotive experts engage, we find common topics where modern fiber attributes are unclear or misunderstood
- We will address several of them today:
 - 1. Bandwidth: Is high bandwidth glass fiber needed in cars?
 - **2. Fit:** Are there unique optical link features that address challenges?
 - **3.** Affordability: Are "exotic" glass fiber networks scalable and affordable?
 - **4. S**uitability: Can glass fiber thrive in the automotive environment?
 - **5.** Test Standards: Are there test procedures & equipment available?
- **Answer:** Modern glass optical fiber technologies are highly suitable for Automotive Networks

Bandwidth

Three powerful design trends are increasing vehicle <u>data rates</u>, and the industry is developing standards to enable them


In-vehicle Infotainment & Experience

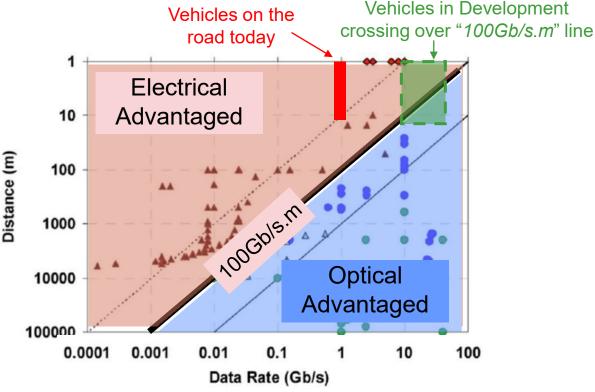


e.g: 8K display uncompressed data rate: 48 to 143 Gb/s

Driver Assistance & Autonomous driving	Autonomy> Sensor	L1 Active Safety	L2 Lane	L2+ Multi Lane	L3 Traffic & Hwy Pilot	L4 / L5 Robotaxi
(Increasing # of sensors)	# of Sensors	7	9	15	18	23
	Data (Gb/s)	~4	~6	~14	~15	~23

Software Defined Vehicles (ECU consolidation)

Bandwidth

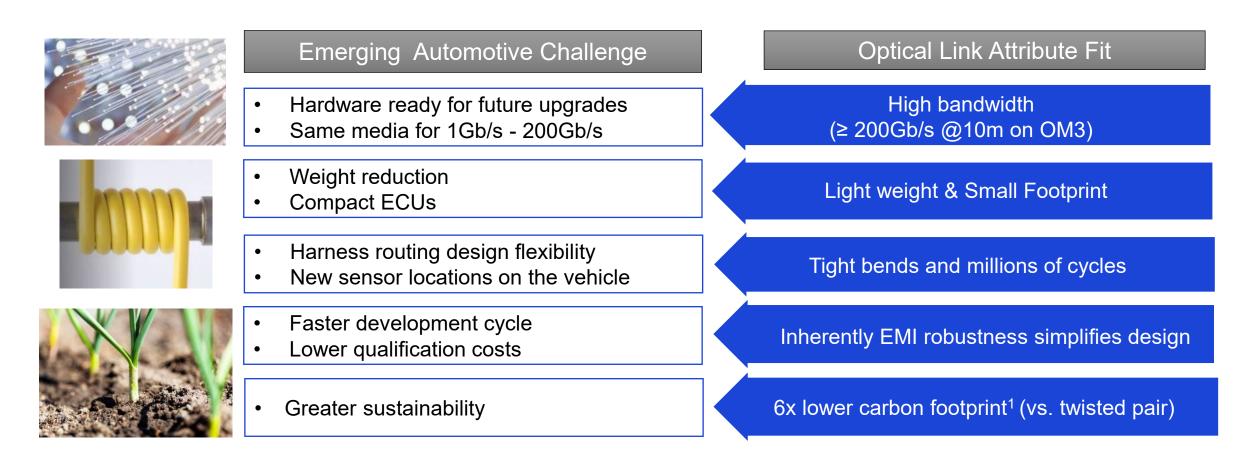

Resulting <u>Data Rate</u> x Distance product will exceed 100Gb/s.m ...a common optical technology transition point

Current known data rate needs in Automotive application are reaching 100Gbps.m threshold

Sensor	Data Rate (~2030)	Distance (m)	Data x Distance (Gbps.m)
Cameras	10G+	5 – 15	>50 to >150
Radars	10-20Gbps	5 – 15	50 to 300
Displays (4k, 60fps)	10Gbps	5 – 15	50 to 150
Backbone	50G+	5 – 15	>250 to >750

Source: IEEE802.3 Task Group meeting presentations

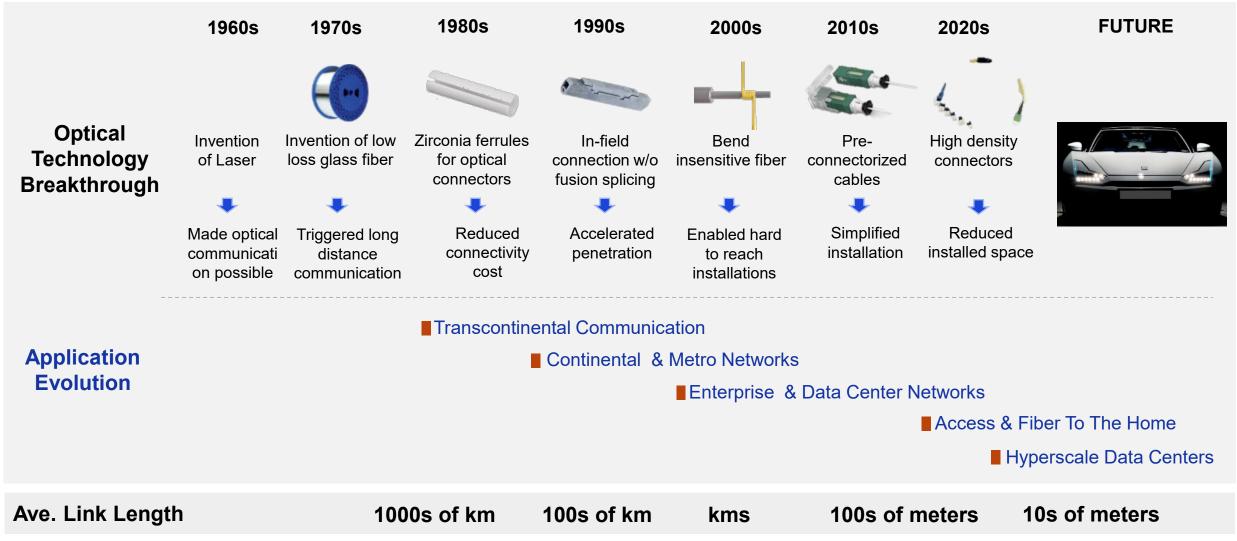
Techno-Economic factors typically favor optical adoption at Data rate x Distance of \geq 100Gb/s.m



Source: A. V. Krishnamoorthy et al., "Progress in Low-Power Switched Optical Interconnects," IEEE J. Select. Topics Quantum Electron., vol. 17, no. 2, pp. 357–376, Mar. 2011

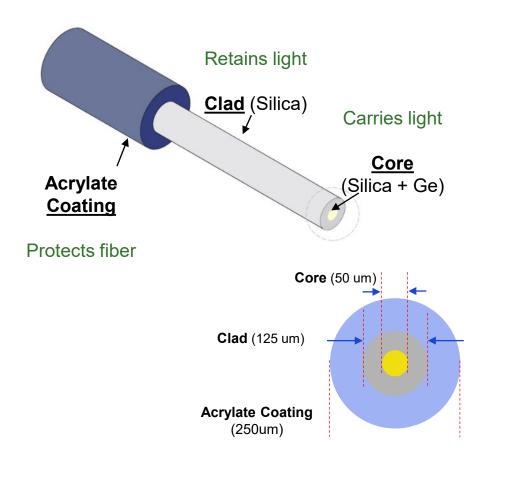
1. In-car network links are evolving to require bandwidth x distance product exceeding 100 Gb/s.m

Fit


Glass optical connectivity solutions offer <u>other benefits</u> for emerging Automotive challenges

2. Optical link attributes may enable simpler solutions and more flexibility for automotive systems

Affordability

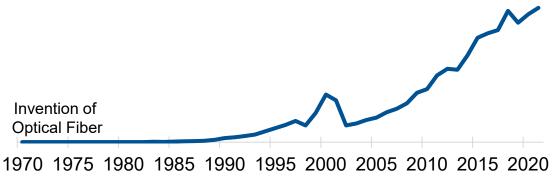

Over the last 50 years Glass Optical Fiber Technology has become an <u>affordable, simple, and</u> <u>reliable</u> high-volume solution for muti-gigabit networks in many industries

Affordability

Standard glass optical fiber leverages decades of innovation to benefit Automotive market

OM3 Multimode glass optical fiber

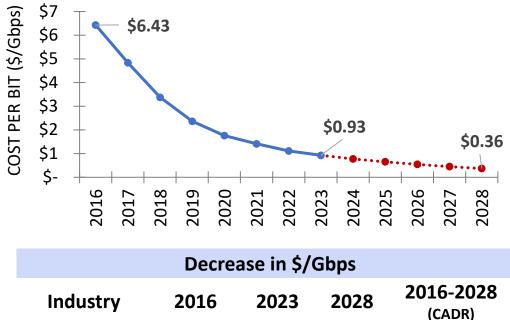
- Standardized (2003)
- Large Bandwidth: 200Gb/s over 10m
- *Bend Insensitive*: ≤ 0.1dB (two turns @ 15mm bend radius)
- *Multiple suppliers*: Asia, Europe & Americas
- Large volumes: Sold several million kms annually
- Specified in IEEE 802.3cz



~11lb Bowling ball hanging from 125um multimode glass optical fiber

Affordability

Optical components and link costs continue to decline



Source: Corning Inc

- Large Install Base:
 - >6B km of optical fiber deployed since inception
- Large Annual Capacity:
 - >500M km/yr → 5B cars*
- Favorable Economics:
 - >40X price decline since inception

Cost (\$/bit) of Ethernet Optical Transceivers

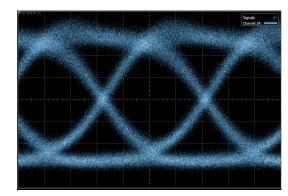
All Ethernet \$ 6.43 \$ 0.93 \$ 0.36 ~21%

Source: LightCounting Optical Components Market Forecast, April 2023

3. Glass optical fiber technology has scaled, is mature and affordable today

* 10m/link & 10links/car

Glass optical fiber-based connectivity solutions can <u>meet stringent Automotive</u> <u>requirements</u>

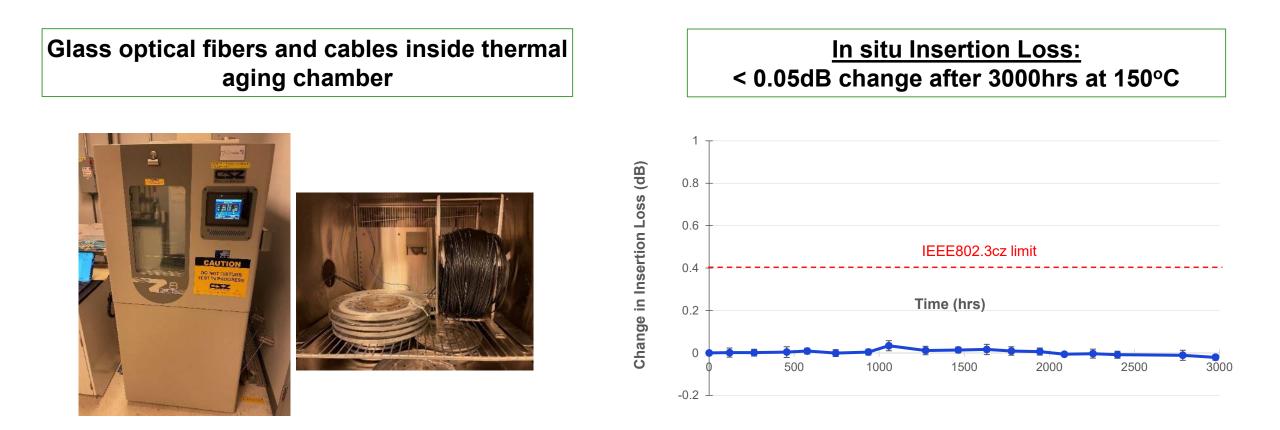

IEEE 802.3cz Link Attributes

- 2.5Gbps 50Gbps
- 40m (max) and 4 in-lines connectors (max)
- Max 2dB per connector

40m glass optical cable with 4 inline connectors

Eye diagram, 25Gb/s NRZ, RT

Measured IL = 0.93dB


~90% Available Link Loss Budget (per channel insertion loss spec of 8.5 dB (25Gbase-AU))

USCAR Requirements

- Temperature: -40°C to +125°C
- Mechanical: Random Vibration and Shock
- Chemical: Several chemicals
- Combination of multiple variables

Glass optical cables are stable at high temperature up to 3000hrs @ 150°C

Note: Corning also tested temperature & humidity cycling per USCAR-2 (40 cycles, 400 hours, -40°C to +150°C) showing <0.05dB change

Glass optical cables are <u>stable to chemicals</u> with no visible degradation after exposure and static mandrel wrap

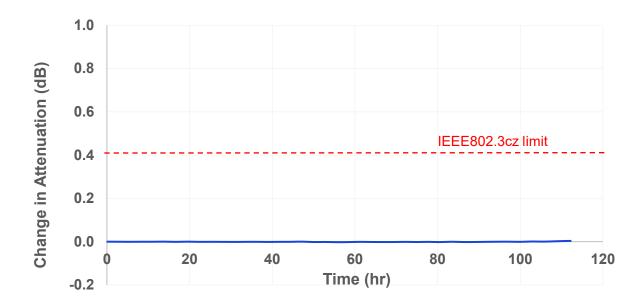
Chemical Exposure

	Chemical	Exposure		
1	Gasoline	60 mins @ 23°C		
2	Battery alkaline	1 min @ 23°C		
3	Mineral hydraulic oil	60 mins @ 85°C		
4	Diesel	60 mins @ 23°C		
5	Brake fluid	60 mins @ 85°C		
6	Window washer fluid	60 mins @ 50°C		
7	Transmission fluid	60 mins @ 85°C		
8	Battery Acid	1 min @ 25°C		
9	Lubrication fluid	60 mins @ 85°C		
10	Antifreeze fluid	1 min @ 23°C		

Static Mandrel Wrap, 9mm diameter¹, 2 Months

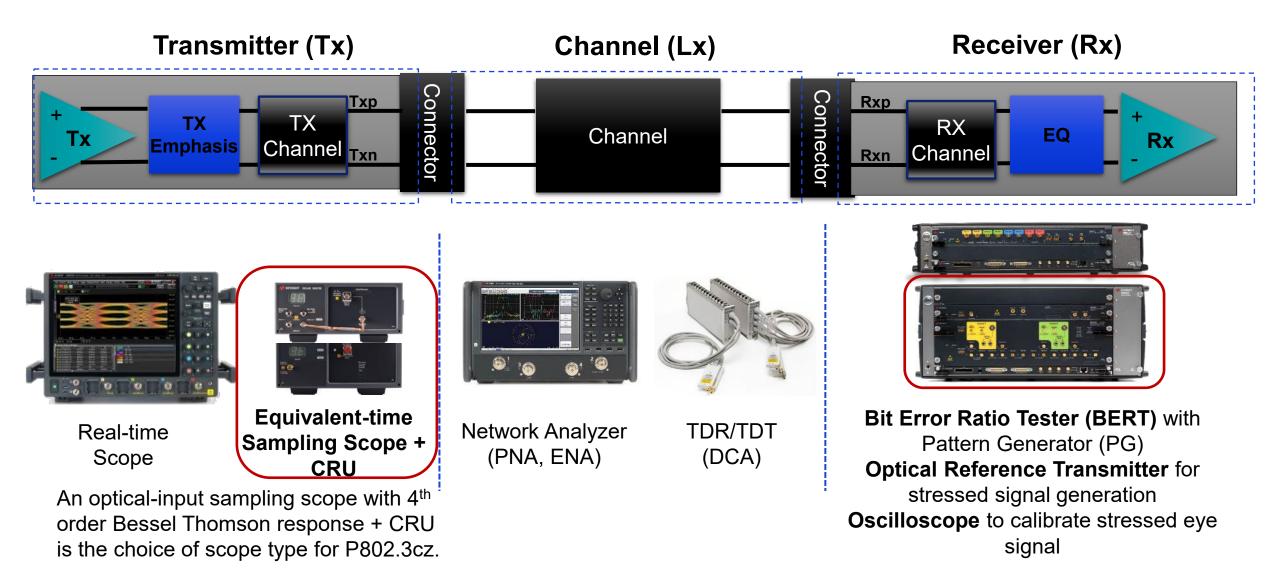
No visible degradation

(No cracking, swelling or discoloration)


¹ Not a measure of long term reliability. See cable spec.

Glass optical connectors are <u>stable in random vibration</u> per USCAR-2 with no change in attenuation

Connector in vibration (random) testing


In situ insertion loss: No notable change in attenuation after "random vibration" testing per USCAR-2

4. Optical fibers, cables, & connectors meet automotive requirements for durability and handleability

Test Standards

Typical Optical PHY Test System

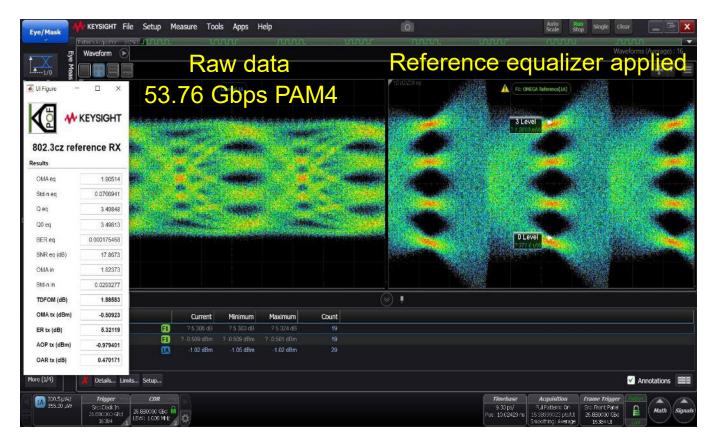
IEEE 802.3cz PMD test patterns and parameters

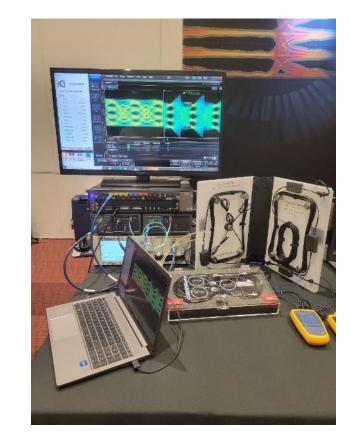
- **TDFOM** (Transmitter and Distortion Figure Of Merit)¹ is a new measurement to evaluate the performance of optical transmitter and to guarantee Interoperability of transmitters.
- For Tx test, the scope should provide the measurements required to perform the test parameters.
- For Rx test, stressed receiver sensitivity measurement validates receiver PHY's ability to work in noisy vehicle environment.

Note¹: specified in the clause 166.6.4.8 of IEEE std 802.3cz-2023

	Pattern	Pattern description	Defined in
-	1	$\begin{array}{l} \text{SSQWP square wave} \left(n_{\text{sq}} \\ \{+1\}, n_{\text{sq}} \left\{\textbf{-}1\}\right) \end{array}$	166.5.2
Тх	2	FSQWP square wave (1 {+1}, 1 {-1})	166.5.3
	3	SSPR-NRZ	166.5.4
	4	SSPR-PAM4	166.5.5
Rx	5	Pattern for stressed receiver sensitivity measurement	166.5.6

Test patterns for Tx and Rx test


Test parameters for NRZ (for 2.5G - 25G)


	Parameter	Pattern	Related subclause
	Center wavelength and RMS spectral width	3, or valid BASE-AU signal	166.7.2
	Average optical power	3, or valid BASE-AU signal	166.7.3
Tx	Outer Optical Modulation Amplitude (OMA _{outer})	1 or 3	166.7.4
	Transmitter and distortion figure of merit (TDFOM)	3	166.7.8
	Extinction ratio	1 or 3	166.7.5
	RIN ₁₂ OMA	1	166.7.6
	Uncorrelated random jitter (t_J)	1or 2	166.7.7
Rx	Stressed receiver conformance test signal calibration (STDFOM and ER)	3	166.7.10.2
	Stressed receiver conformance test signal calibration (RIN and random jitter)	1	166.7.10.2
	Stressed receiver sensitivity	5	166.7.10.3

Note: Similar test parameters exist for PAM4 50G

Optical Standards and Testing

Measurement systems and test results

Optical automotive ethernet "proof of concept" measurement on automotive grade 40m long OM3 multi-mode fiber optical cable with 4 inline connectors demonstrated at IEEE Tech Days event in Yokohama 2022

5. Test procedures and Equipment for Optical Automotive applications exist

Conclusion

Automotive industry can benefit from leveraging decades of technology innovations in Glass optical connectivity

- Automotive applications have evolved and can now derive significant benefit from glass optical fiber technologies
- We have shown:
 - **1. B**andwidth: Automotive applications benefit from fiber's Bandwidth
 - 2. Fit: Glass Optical links are Fit to address several other Automotive challenges
 - 3. Affordability: Glass fiber technology is mature and Affordable
 - 4. Suitability: Glass fiber is Suitable for use in the car
 - 5. Test Standards: Test procedures and equipment exist
- Now is the time to start developing expertise to find the right applications for this technology

Optical connectors are suitable for the automotive environment

