

Futuristic Automotive Software Architecture

Microservices, Orchestration and Networked Hardware

Anil Dhonde, Ethernovia Inc.

IEEE SA Ethernet & IP @ Automotive Technology Day São Paulo, Brazil September 2023

Agenda

- Key Concepts
- Ethernet Today
- Futuristic Software Architecture
- DevOps
- Pros and Cons
- Future Work

Traditional Monolithic SW Arch

- Tightly Coupled Architecture
 - Applications chained to HW
- One SW Image
 - Single Build
 - Build/Test for every change
 - Major Release/Update

OEM Software Supply Chain

Tier 1

Tier 1

- OEMs offload SW to Tier 1's
- Multiple SW suppliers
 - Different platforms
 - Different architectures
- Painful integration
 - Test, Release, Update

Monolithic -> Microservices

- Loosely coupled
- Network comm
 - Microservices
 - Applications
- Location Freedom
- Design breakdown
- Independent Lifecycle
 - Build, Release, Update

Containers

- Containers Manage
 - Microservices
 - Applications
- Platform independence
- Libraries and services, ex: network
- Build Once, Run Anywhere

Orchestrator

Container Container Orchestrator Microservice **Application** Manage Containers @ Run Time Configuration, Lifecycle **Load Balancing** RTE Redundancy, Fault recovery Routing services OS HW HW HW **API** API API HW HW HW **ECU**

OEM's Software Destiny

- Software is the Differentiator of the future
- OEMs want to build Software applications in-house
 - Some OEMs have already setup up software entities
- OEMs will need full control over the Software destiny

Ethernet Today

- Due to the ongoing work in IEEE802.1 TSN group, Automotive Ethernet is now:
 - Time Bound
 - Deterministic
 - Reliable

... hence, we can deploy a Software Architecture with Ethernet as the key enabler!

Architecture: In-Vehicle Cloud

Almost Endless Possibilities

Networked Hardware

Ethernet Ubiquity

Independent Stacks

DevOps
Development & Operations

Traditional

Dev and Ops

Source: https://commons.wikimedia.org/w/index.php?curid=51215412

Dev: Virtual or Networked HW

Ops: Networked Physical HW

Mix Of Enterprise and In-Vehicle Cloud

Pros and Cons

Pros: Dev

- Complexity breakdown
- Scalability
- Independence: Processing platform, Hardware and Topology
- Agile: Move away from Waterfall, Shift Left (Early Validation)
- Supplier friendly development
- Enhancement and Future revenue streams
- Hybrid possibilities: "Move" ECUs to the Cloud

Pros: Ops

- Time to market
- Load Balancing
- Failure Detection, Isolation and Recovery
- Lifecycle/Updates: CI/CD
- Canary deployment
- Policing

Cons

- Cultural shift, steep learning curve
- Validation: Limit endless possibilities
- Overhead: Processing, Memory
- Legacy hardware integration
- Compatibility

Summary

- Monolithic SW is difficult to Develop and Deploy
- Ethernet allows Breaking Down the Monolith
- Futuristic Software Architecture
 - Endless Possibilities
 - Ethernet Uniquity
 - Networked Hardware
- Benefits for DevOps
- Mix of Enterprise and In-Vehicle Cloud

Future Work

- Lightweight Containers and Orchestrators
- Networked Hardware and Standardization of APIs
- Safety, Reliability and Security needs a modern approach

Concluding Thoughts

Software: Think Cloud First.

Hardware: Ethernet Ubiquity.

