Enhancing Automotive Ethernet Efficiency for Emerging, Asymmetrical Use Cases
Ethernet & IP @ Automotive Technology Week

Thomas Hogenmüller, Bosch
Amir Bar-Niv, Marvell
Japan
November 9-10, 2022
Personalized, Automated, Connected and Electrified cars need new E/E-architecture to address several important needs

PACE changes...

...customer and OEM needs; which needs to be addressed by...

...a new E/E-architecture

**Personalized**
- Fast and easy integration of new features update/upgrade

**Automated**
- Manage EE architecture complexity
- Security & Safety (Ensure freedom of interference, OBD, ...)

**Connected**
- Minimize TCO¹
- Improve multi-party collaboration for X-domain features
- Resource efficiency (power consumption, weight, size, bus-load, memory, ...)

**Electrified**
- Enable UX feature (deep in vehicle data access for smarter vehicles)

1) **TCO**: Total Cost of Ownership considering total vehicle lifetime
“True North” with centralization of application in Vehicle Integration Platform (VIP) and hardware in Zone ECUs

VIP (xIP)

Application transferred to CLOUD
Application centralized in „BRAIN“ VIP

Hardware centralized into ZONEs

Zone ECU is “Hardware Middleware” link between VC and Smart ECUs, mechatronics, sensors and actuators:
• Central data processing
• High integrated SoCs (uC, uP)
• SW integration platform
• Multiple operation systems (Classic -, Adaptive Autosar, Linux, ...)
• Central Gateway to backend and zonal layer

Zone ECUs

Power-Hub
Data-Hub
I/O-Hub

Zone
Zone
Zone

- Central data processing
- High integrated SoCs (uC, uP)
- SW integration platform
- Multiple operation systems (Classic -, Adaptive Autosar, Linux, ...)
- Central Gateway to backend and zonal layer
Evolution of Zonal E/E-Architecture

- ≤ SAE Level 2+
  - 1 Vehicle Computer
    - xIP (w/ ADAS, motion, ...)
  - Few Vehicle Computer by Integration
    - xIP1
    - xIP2 (w/ ADAS)
    - xIP1 (w/ ADAS)
    - Multi Media
  - Many Vehicle Computer
    - xIP1
    - xIP2
    - xIP3
    - xIP4

- ≥ SAE Level 3
  - Due to required redundancy concepts not expected
  - xIP1 w/ AD2
  - AD1
  - xIP2

Evolution to optimize TCO

- Sensors/Actuators Layer
  - ADAS/AD sensors
  - Displays, Audio

- Zonal Layer
  - No zones
  - Zones non ADAS-, HMI-based
  - Zones partly ADAS-, HMI-based
  - Zones fully ADAS-, HMI-based

Evolution to optimize TCO
Ethernet reduces the amount of different IVN Technologies

- Used Serdes (LVDS) technology today are proprietary point to point technologies
- Asymmetric Ethernet offers modern network technology
  - Standardized at IEEE → Strong Multi-Vendor Eco System
  - Unification of traffic at zone of different sensors on one Ethernet backbone with TSN and MACsec
  - Same Communication mechanism for Sensors (Radar, Lidar, Camera), I/O, encapsulated CAN/LIN using IEEE1722
    - Harmonization of sensor data enables plug & play for OEMs
    - Lowers costs and increases performance
- Universal components leads to higher volumes and lower costs
Key success factor “Standardization”

- IEEE 1722 – Video, Radar, Lidar, I/O, CAN, encapsulation over Ethernet
- OPEN TC16 – Compliance for EEE-based Asymmetrical Ethernet
- IEEE 802.3cy – 25G-T1 PHY standard
- NAV Alliance TWG4 – proposal for sensors encapsulation over Ethernet
Key challenges to be addressed

- Fast wake up time < 100ms
- TSN and EEE Coexistence
- Dynamical reconfiguration for multiple data sinks
- Low latency
- Low power consumption comparable to SerDes
- Low total cost of ownership
- Cable flexibility – STP and Coax
OEM transition to zonal architecture

The trend is accelerating

- OEM with Zonal (2021 survey)
- OEM with Zonal (2022 survey)
Zonal network

Camera **point-to-point** connectivity

- Long cables. Bypass the zonal network.
- No camera sharing between domains.
- Proprietary protocols.
- High number of pins on SoC.

* - P2PP = Point-to-point protocol
Zonal network

Ethernet camera bridge

- **Standard-based**
- Enable the Ethernet end-to-end ecosystem
- Enable Software end-to-end
- Support Zonal architecture
- Reduce cable length and weight
- Reduce number of pins on SoC
Ethernet key advantages for camera interface

- **Switching and virtualization** – IEEE 802.1
- **Security** – Authentication and encryption – IEEE 802.1AE MACsec
- **Time-synchronization over network** – IEEE PTP 1588
- **Power over cable** – IEEE PoDL 802.3bu
- **Audio/video bridging** – IEEE 802.1 AVB/TSN
- **Asymmetrical transmission, using energy efficient Ethernet protocol** – IEEE 802.3az
- **Support for all topologies** – Mesh, star, ring, daisy-chain, point-to-point

---

**Testing houses**
for PHY compliance, interoperability and EMC

**Ecosystem**
for hardware and software/utilities infrastructure
Requirements Analysis
Wake up time analysis (target: < 100ms)

Four stages:

- **Sys init**: Includes reset, crystal oscillator startup, PLL startup, Efuse read back, firmware code initialization
- **HCS**: Optional host config stage. Typical 5ms, maximum 20ms
- **Link start**: Initialize analog front end
- **Link up**: 802.3ch link training
TSN and EEE coexistence

- Link enters EEE Low Power Idle mode (LPI) when link is idle
  - Entry typically triggered by a transmit idle timer
- Asymmetric EEE, allowing independent LPI entry for each direction
  - Forward channel idle during video blank time
  - Reverse channel idle during active video time
- LPI exit requires an initial packet transmit delay
  - Link rate dependent - 9/18/36us for 10/5/2.5G rates
- Only first packet in burst will experience wake delay
  - Assumes idle timeout larger than packet spacing
  - Minimal overall effect on TSN traffic
- High bandwidth traffic prevents idle timeout – no effect on TSN
Dynamical reconfiguration for multiple data sinks

- Cameras traditionally use I2C for control
- 1722b I2C control format allows bridging of I2C busses
  - I2C transactions bridged byte at a time
- 1722b Generic Byte Bus (GBB) can provide remote I2C access
  - Entire I2C transaction passed in a single packet
  - Multiple transactions can be carried in a single packet
  - Eliminates need for physical I2C bus at SoC/controller endpoint
Latency in network

Latency
SOF (T1) to SOF (XFI)
#1 #2

8.2us

Latency
SOF (T1) to SOF (T1)
#1 #2

Latency
SOF (Video-In) to SOF (T1)
#1 #2
Relative power in asymmetric Ethernet with EEE

- EEE saves power by only transmitting data when needed (Asymmetrical Ethernet)
- The table shows relative power numbers based on duty-cycles for 10Gbps from the camera and 100Mbps (1%) to the camera
- The circuits that are continuously ACTIVE in the camera module (Tx and Always On) are very similar between Ethernet PHY based camera and SerDes based camera, which results in similar power consumption

### Relative PHY power consumption

<table>
<thead>
<tr>
<th>Block</th>
<th>Relative power</th>
<th>% of time on camera side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always On</td>
<td>25%</td>
<td>100%</td>
</tr>
<tr>
<td>Tx</td>
<td>15%</td>
<td>100%</td>
</tr>
<tr>
<td>Tx + Rx (Echo Canceller)</td>
<td>30%</td>
<td>1%</td>
</tr>
<tr>
<td>Rx</td>
<td>30%</td>
<td>5%**</td>
</tr>
</tbody>
</table>

* - “Always On” includes circuits like some of the clocks, bandgap, LDOs, pads, etc.
** - Although the Rx works 1% of the time, there is some additional power due to some filters’ requirements
PHY cost analysis

- The main difference between the Ethernet PHY and SerDes technologies is the addition of the Echo Canceller
- Ethernet T1 PHY is very size efficient (small)
- Eliminating the echo canceler saves less than 5% of the total product ASP
Cable harness cost reduction

Insertion loss for coax cables*:
- Ethernet 10G: IL at 3GHz is \(-25\)dB
- LVDS 12G: IL at 3GHz is \(-18\)dB

* - 802.3ch is defined for STP cable (differential). At 3GHz, thePHY can accommodate insertion loss of 31dB. Ethernet can also run over coax cables. For coax (single ended), need to reduce 6dB, which results in insertion loss of 25dB.

1. Zonal with Ethernet cameras uses very short cables
2. For the same length, the Ethernet 802.3ch cables will always be cheaper than LVDS cables

© 2022 Marvell. All rights reserved.
## Ethernet cost advantages

<table>
<thead>
<tr>
<th></th>
<th>Serdes</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera bridge cost</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Cable cost</td>
<td>Higher</td>
<td>Lower</td>
</tr>
<tr>
<td>External chip next to switch</td>
<td>Required</td>
<td>Not required</td>
</tr>
<tr>
<td>Number of pins on SoC</td>
<td>Very high</td>
<td>Very low</td>
</tr>
</tbody>
</table>
Ethernet multi-gig PHY over coax

The specifications of Ethernet IEEE 802.3ch PHY make it suitable to work on both STP and coax cables.
Key takeaways on asymmetrical Ethernet PHY

Camera Ethernet PHY

- Standard based (switching, virtualization, security, ……)
- Software and ecosystem leverage
- Fast wake up time
- Easy integration into TSN based backbone
- Simple reconfiguration of multiple data sinks
- Meet latency target
- Low power consumption
- Comparable price to SerDes devices; No need for Deserializer
- Lowest cost of cable harness
- Cable flexibility – STP and coax
Thank You
Essential technology, done right™