Automotive SDN: Prototype and Use-cases

Hyun taek Hong (LG Electronics Inc. ht.hong@lge.com)

Kilho Lee (Soongsil University khlee.cs@ssu.ac.kr)
Agenda

- Introduction
- Use cases
- Architecture
- Evaluation
- Conclusion
Why Automotive SDN?

✓ Vehicle network architecture trend and future roadmap

- High Bandwidth
- Ethernet backbone among ECUs
- Heterogeneous network around zone ECUs

✓ Further consideration of future vehicle network

- Fail-over
- Dynamic bandwidth control
- Flexibility of future network capability
Key characteristics of SDN

1. SDN can provide fail-over operation in case of failure
2. SDN can control bandwidth dynamically based on the vehicle situation
3. SDN can reconfigure the network after the new service is deployed

SDN in general

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>• Centralized software</td>
</tr>
<tr>
<td></td>
<td>• Global view of the network</td>
</tr>
<tr>
<td>Data Plane</td>
<td>• Control by SW-based control application</td>
</tr>
<tr>
<td></td>
<td>• Programmable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Flow</td>
<td>• Control packet forwarding table</td>
</tr>
<tr>
<td></td>
<td>• Use case : Routing control</td>
</tr>
<tr>
<td>NETCONF</td>
<td>• Control network configuration</td>
</tr>
<tr>
<td></td>
<td>• Use case : Bandwidth control</td>
</tr>
</tbody>
</table>

✓ **Software Defined Network**

- An alternative to the traditional switch-based network
- Centralized Control
- Programmability

2022 IEEE-SA Ethernet & IP @ Automotive Technology Week, Hyun taek Hong (LG Electronics) & Kilho Lee (Soongsil University)

4
Considerations for Automotive SDN

✓ Relatively small compared with traditional data center
 • Number of network nodes for end-to-end communications are small

✓ Hardware upgrade is limited
 • Once the vehicle is delivered to customer, it should be maintained more than 10 years

✓ The possibility of physical damage is higher than the legacy IT system
 • Crash can be happening a lot compared with traditional systems

✓ Co-existance with legacy network like CAN
 • Legacy network traffic is combined with Ethernet traffic

✓ Energy efficient network management
 • Minimal network operation according to the given situation
Previous study of Automotive SDN

✓ MC-SDN (Mixed-Criticality SDN)
 - Network flows with different levels of criticality
 - Dynamic scheduling policy depending on the system mode

✓ FR-SDN (Fault-Resilient SDN)
 - Recover from link failure by finding alternative routes
 - Perform path restoration from SDN controller-driven to switch-driven

Adaptive Cruise Control
Adjusting the car speed to maintain the safe distance.

Goal
Preserving the cruise control performance against link faults

At here, a link fault happens in the following car.

Safe distance 1.5 m

0 m

15 m
SDN use-case 1: Dynamic bandwidth/priority control

✓ Scenario
 • Reserve bandwidth to the front camera / sensors when emergency event is detected

✓ It dynamically manages bandwidth/priority guarantees according to the runtime network usages

✓ Bandwidth/Priority controls
 • Queue management
SDN use-case 2: CAN signal transfer with priority

- Scenario
 - Radar signal transfer when lane-change is triggered

- There will still be CAN signals as it will take a long time to eliminate legacy parts

- Priority controls
 - Select relevant priority when transferring
 - Transfer frequency control
 - Packet size control
SDN use-case 3: Maintain reliable communication

✓ Scenario
 • It maintains reliable communication even if a fault happens on some network link/node

✓ Upon detecting a fault, it then establishes an alternative path to detour the fault.

✓ Path reconfiguration
 • Flow table update
 • Measure QoS
 • Control path re-establish
Reference architecture: Overall design

✓ Draft architecture considering 3 scenarios

System Architecture

SDN 3 Layers

- Network planner
 - Fault handling
 - BW-aware routing
 - Network status

- Northbound interface (App – controller)
- Control Layer
- SDN controller abstraction
- Southbound interface (controller – switch)
- Infra Layer
- SDN switches
Reference architecture: Network planner

✓ Role of Network planner

• Monitors & maintains the global information of all the network nodes
• Reserves the bandwidth for a specific flow by controlling multiple nodes
• Reconfigures the path by monitoring each network node status

✓ Considerations for Network planner for automotive networking systems

• Dynamic bandwidth reservation & packet prioritization
• Reliable communication based on runtime fault recovery
Reference architecture: Routing

✔ Role of the routing component
 • Determines a proper route subject to the flow requirement

✔ Considerations for the routing component
 • Responsiveness
 • QoS/timing requirements
 • Runtime dynamic routing
Reference architecture: Fault handling

✓ Role of the fault handling component
 • Restores flow routes upon link/node faults

✓ Considerations for the fault handling component
 • Fault detection
 • Responsive route update
 • Control channel recovery
Reference architecture: Signal to Service Translator

✔ Role of Signal to Service Translator
 • Focusing on deterministic transmission of CAN signals with priority control logic

✔ Considerations for Signal to Service Translator
 • Priority control
 • Filtering while translation (eliminate duplication, scenario based filtering)
 • Relationship with SOA

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Handler</td>
<td>Translate CAN signal to Service message</td>
</tr>
<tr>
<td>Service Handler</td>
<td>Translate Service message to CAN signal</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter CAN signal to translate</td>
</tr>
<tr>
<td>Priority Manager</td>
<td>Assign priority to Service message</td>
</tr>
<tr>
<td>CAN Manager</td>
<td>Send / Receive CAN signal</td>
</tr>
<tr>
<td>SOME/IP</td>
<td>Send / Receive Service message</td>
</tr>
</tbody>
</table>
Reference architecture: Experiment

✓ Prototype implementation
 • Networked embedded nodes
 • Physical Ethernet & CAN communications
Evaluation: bandwidth reservation

- Efficacy of routing & bandwidth reservation
 - The target (safety- or mission-critical flow) effectively reserves the bandwidth.
 - Despite the contending best effort flows.

- Setup
 - Target flow: RR \rightarrow V-COM, UDP, 70Mbps
 - Background: FR \rightarrow VCOM, TCP, BE (up to 100Mbps)
Evaluation: CAN signal prioritization

- Efficacy of CAN signal prioritization
 - The safety-critical CAN signal shows stable latency
 - Despite the contending best effort flows.

- Setup
 - Target CAN signal: CAN device → CAN-BUS → RR(S2S) → VCOM (8 Bytes@1000 Hz, UDP encap.)
 - Background: FR → VCOM, TCP, BE (up to 100Mbps)
Evaluation: Fault handling

- Efficacy of Fault handling
 - Effectively restores flow route upon link failure.

- Setup
 - Target CAN signal: CAN device → CAN-BUS → RR(S2S) → VCOM
Conclusion

✓ Recap: automotive SDN
 • Key issues and use-cases
 • Reference architecture
 • Prototyping & evaluation

✓ Implications
 • Better flexibility, efficiency, and reliability → essential features for SDV.

✓ Discussion & further considerations
 • Security
 • Functional Safety
 • Better SDN interfaces for automotive
 • Integration with the automotive software architecture
Hyun taek Hong
Research Fellow / Architect
Vehicle component Solutions Company
LG Electronics Inc.
ht.hong@lge.com

Kilho Lee
Assistant Professor
School of AI Convergence
Soongsil University, Korea
khlee.cs@ssu.ac.kr