Using Redundant Data Paths and Clock Domains in Ethernet TSN for Mission-Critical Network Reliability

Presented by: Shrikant Acharya
Chief Technology Officer, Excelfore Corp.

Contributing Authors: Anoop Balakrishnan, Excelfore Corp.
Shiro Ninomiya, Excelfore Corp.
Mission-Critical Automotive Networking

- Sensors
- ADAS Controller
- Actuators
- Driver Reaction

Everything Working Together

Network Failure

Enhanced Safety

Problems!
Representative Approach to Next-Gen Vehicle Network
(Physical Domains / No Redundancy)

- **Vehicle Gateway**
 - CAN
 - Ethernet TSN
 - Ethernet AVB
 - LVDS

- **Powertrain**
 - CAN
 - Ethernet TSN
 - Ethernet
 - ASIL D

- **Infotainment**
 - CAN
 - Ethernet AVB
 - Ethernet TSN
 - ASIL B

- **ADAS**
 - Ethernet TSN
 - LVDS
 - ASIL D

- **Body/Chassis**
 - LIN
 - CAN
 - ASIL B

Cloud Server
Ethernet-Centric Next-Gen Vehicle Network
(Logical Domains / No Redundancy)

VLANs
Create the Domains

Redundancy to Address:
Failure of a Network Link
Failure of a Device on the Network
Mission-Critical Network Redundancy

Key Software Concepts for Redundancy in TSN Networking:
A. Redundant Data Paths – IEEE802.1CB
B. Timing and Synchronization – IEEE802.1AS / 802.1BA
C. Redundant Clock Domains – IEEE802.1ASrev

Three Levels of Hardware Redundancy:
1. Redundant Links Between Network Gateway/Switches
2. Daisy Chaining End Devices to a Network Gateway/Switch
3. Daisy Chaining End Devices to Redundant Network Gateway/Switches
Redundant Links Between Switches

Positive Attributes:
- Protection from Failure of Network Link on Highspeed Backbone
- Maximum of 2 Switch Hops Retains TSN Guaranteed Latency (< 2ms on 100Mbps Ethernet)

Shortcomings:
- No Protection from Failure of Network Link to End Devices
- No Protection from Gateway/Switch Device Failure
Dual Ethernet Nodes: Key Hardware Feature

• Limitation of Single Node End Points
 • Redundant Paths only at Switch Nodes, not at End Points
 • Frame Replication at the Switch
 • No Frame Replication at End Point

• Enhanced Redundancy with Dual Node End Points
 • End Points can Replicate Frames from a Talker
 • Daisy Chaining of End Points Improves Redundancy
 • Daisy Chaining of End Point Improves Utilization of Switch Ports
 • Automotive Processors Support Dual Ethernet Nodes:
 • NXP i.MX6 Family
 • TI Jacinto J6 Family
Daisy Chaining Dual Node End Devices

End Device with 2 Ports May have a 3 Port Switch:
- 2 External Ports
- 1 Internal Port

One Link Failure Does not Disconnect Devices
One Device Failure Does Not Disconnect Other Devices
Careful Analysis of Switch Hops Required to Ensure Guaranteed Latency
Redundant Links between Switches / Dual Node End Points

Positive Attributes:
- Protection from Failure of Any One Network Link
- Network is Still Protected from Edge Device Failure
- Better Node Utilization at the Switch
- Maximum of 6 Switch Hops (3 + 2 + 1 -or- 1 + 2 + 3)
- Retains TSN Guaranteed Latency with Any One Failure

Shortcomings:
- No Protection from Gateway/Switch Device Failure

3 Hops from End Point to Backbone 2 Hops in the Backbone 1 Hop from Backbone to End Point
Redundancy Impact

- **Hardware Costs**
 - End Points Need Two External Ethernet Nodes

- **Software Performance** (higher impact with higher payloads, utilization doubles)
 - Overhead of Replication on the End Point
 - All packets = processing doubled
 - If overhead for packet transmission = 10%, with replication = 20%
 - Overhead of Replication on the Switch (Utilization is Doubled)
 - Depends how many packets need to be replicated to the various ports
 - Also impacted is how many deletions are happening

- **Network Bandwidth**
 - Aggregates Bandwidth Load of Daisy-Chained End Points
 - Overall Network Traffic on Some Links May Increase by Multiple (discussed later)

- **Daisy Chaining Mitigates the Port Utilization at the Switch**

- **End Points with Single Nodes Can Not Daisy Chain**
 - May be Appropriate for Non Mission-Critical Tasks
Full Redundancy in End-to-End Network Connections

Loss of Any Single Network Link, or Any Network Switch, is Recoverable
Loss of Any End Point Does Not Affect Connectivity of Other End Points
Control Latency: Analyze the Number of Hops

2ms End-to-End Latency Guaranteed on 100Mbit Network - For Any One Failure No More than 7 Switch Hops
Reminder: Ethernet-Centric Next-Gen Vehicle Network
(Logical Domains / No Redundancy)

- Ethernet or OBD Diagnostic Port
- High-Speed Ethernet TSN
- Gateway/Switch
- VLANs Create the Domains
- Powertrain Controller
- Body Controller
- Head Unit
- IVI Head Unit
- ADAS Controller
- Ethernet or OBD Diagnostic Port
- High-Speed Ethernet TSN
- Gateway/Switch
- Ethernet or OBD Diagnostic Port
- High-Speed Ethernet TSN
- Gateway/Switch
- Ethernet or OBD Diagnostic Port
- High-Speed Ethernet TSN
- Gateway/Switch
- Ethernet or OBD Diagnostic Port
- High-Speed Ethernet TSN

Redundancy to Address:
- Failure of a Network Link
- Failure of a Device on the Network
Loss of any single network link, or any network switch, is recoverable. Loss of any single network link or switch preserves guaranteed latency. Loss of any end point does not affect connectivity or latency of other end points.
Software Implications of Redundant Network Paths

Frame Replication and Elimination for Reliability
IEEE 802.1CB
Simple End-to-End Network Connections
(No Redundancy)

- Link A-E
- Link E-F
- Link F-Z
- Switch E
- Switch F

Failure in Any One Makes the Connection Fail
FRER
(Frame Replication and Elimination for Reliability)

Replication
1x Incoming “Packet A”
“Packet A” is Replicated
2x “Packet A” Sent Out

Elimination
2x Incoming “Packet A”
1x “Packet A” is Eliminated
1x “Packet A” Sent Out
Identifying “Packet A”

Ethernet Header

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Source Address</th>
<th>R-TAG</th>
<th>VLAN-TAG</th>
</tr>
</thead>
</table>

- **F1 C1**
- **Reserved**
- **Seq Num**

(optionally ‘HSR-TAG’ or ‘PRP-TAG’)

- Destination Address + Source Address + Vlan ID + Seq. Number can Identify the Packet
- This Packet Identification is Sufficient for Replication and Elimination by Relay System (Switch)
1. Many Redundant Paths
2. Bandwidth (BW) Utilization is Doubled
3. Switch E is Simple Replication (~5% overhead).
4. Computation Complexity is Increased on Switch F and H (~30% overhead).
Software Implementation
(Replication)

• Check R-TAG in the Incoming Packets from MAC1
 If not Exit, then Insert R-TAG
• Keep Track in the Internal Table for PACKET ID
• Replicate and Send to Requested Ports (MAC4, MAC5)
Software Implementation (Elimination)

- Check R-TAG in the Incoming Packets from MAC1 and MAC2
- Keep Track in the Internal Table for PACKET ID
- Eliminate Replicated Packets and Send to Requested Ports (MAC4)
 If MAC4 does not Request R-TAG, Remove It
Design Implication for Replication/Elimination

• Software Solution
 Layer 2 Software can Implement this Logic – Requires ID Check on Each Packet
 This Impacts Latency from Additional Processing
 Processor Utilization May Exceed Capacity Under Heavy Traffic (~40Mbits/Second of Video Data)

• Suggested Hardware Acceleration
 R-Tag Insertion or Elimination
 PACKET ID Look-Up Table (e.g. MAC Addr, VLANID, Sequence No.)
Redundancy of GrandMaster Clock

No Disruption of Network Devices by GM Failure
IEEE 802.1AS-Rev
Current Diagram for Clock Sync

Switch (Relay) F

- End Point A
 - Clock A
 - Primary GM
- End Point B
 - Clock B
- End Point C
 - Clock C

Switch (Relay) G

- End Point Y
 - Clock Y
 - Secondary GM
- End Point Z
 - Clock Z

Red X indicates a connection issue between End Points A and C.
Current Procedure for Clock Sync Implementation

- End Point A Fails
 GM Clock (Clock A) is Lost on the Network

- Network Starts BMCA (IEEE1588 Best Master Clock Algorithm)
 Chooses One of among Clock B to Clock Z as New GM Clock

- Clock Y Becomes New GM Clock

- Switching GM from Clock A to Clock Y
 Procedure Requires Multiple Seconds
 All Devices Lose Synchronization During Procedure
Diagram for Redundant GM Clock Sync Implementation

Primary GM

Hot-Standby GM

Endpoint A
Clock A

Endpoint B
Clock B

Endpoint C
Clock C

Endpoint Y
Clock Y

Endpoint Z
Clock Z

Bridge F

Bridge G
Procedure for Redundant GM Clock Sync Implementation

• Primary GM is Clock A
 Secondary GM is Clock Y

• Two Domains of 802.1AS Clock are Running Separately

• Normal Circumstance:
 GM in the Secondary Domain is Not Operational

• Upon Failure of Primary GM:
 Network Seamlessly Switches to Secondary GM

• No Devices Lose their System Synchronization

Note:
Management of Multiple Domains of PTP Messages is Currently Being Defined in 802.1AS-rev
Implementation of Redundant GM
(Updating the gPTP Kernel)

Following Functions Must Be in Updated gPTP:

• Handling of Multiple Domains of SYNC Messages
 Our Example is Two Domains – *Could be More*

• Manage Clocks of Multiple Domains
 Keep Track of Primary GM and Secondary Stand-by GM
 Secondary GM Must Be Synchronized to the Primary GM
 (Required for Seamless Switching)

• If Primary GM Fails Each gPTP End Device Switches to Secondary GM
 No Impact from Clock Discontinuity on Any gPTP End Device
 Switching from Primary GM to Secondary GM is Seamless
Replacement of Malfunctioning GM – a Proposal
(Updating the gPTP Kernel)

Case of a Malfunctioning GM
(Clock is degraded, but not lost)

• Two GMs Inadequate for Redundant Clock Domains with Hot Standby
 • Which GM is Correct in a Dispute?

• Requires Third GM to Audit Clock Behavior

• Implementation of the Auditor GM
 • One GM Contests That Other GM is Malfunctioning
 • Auditor Checks Status of Both GMs
 • Auditor Renders Decision and Notifies All GMs
 • Auditor Sends Malfunction Notification to GM
 It surrenders and ceases to be GM
Diagram for Redundant GM Clock Sync Implementation

- **Endpoint A**: Clock A (Primary GM)
- **Endpoint B**: Clock B (Auditor)
- **Endpoint C**: Clock C
- **Endpoint Y**: Clock Y (Hot-Standby GM)
- **Endpoint Z**: Clock Z

Connections:
- Bridge F connects to Endpoint A and Endpoint B.
- Bridge G connects to Endpoint C, Endpoint Y, and Endpoint Z.
- Arrows indicate data flow and redundancy.
Performance Impact of GM Clock Redundancy

• Network Traffic
 Additional ~1% Overhead in Redundant Sync Messages at 40Mbits/second

• Software Solution on Each gPTP Node
 GMAC Software Complexity will Increase
 - Each PHY/GMAC Receives 2x the Number of Sync Messages
 - Validate and Process the Secondary Sync Messages
 - Input Processing Requires More Performance in PHY/GMAC

• Suggested Hardware Acceleration
 Detection of Clock Domain ID
 Keeping Track of Separate Sync Messages and Time Stamps
802.1AS Rev Spec vs. Implementation

• Standard Only Warrants How Hot-Plug GM Setup Envisaged
 How to manage multiple different domains of PTP messages still under definition

• Detection of Malfunctioning GM is Not Part of the Standard
 • Left to Individual Implementation
 • Minimum: Third GM for Monitoring
 - Monitoring and Regular Review
 - Implications for Startup Time
 - Added Cost to Implement
 - Input Processing Requires More Performance in PHY/GMAC

• Cost Implication for Third GM
 • Complexity Left to System / Network Implementer
Summary of Opportunities for Hardware Acceleration

For Frame Replication and Elimination for Reliability:
• R-Tag Insertion or Elimination
• PACKET ID Look-Up Table (e.g. MAC Addr, VLANID, Sequence No.)

For Redundancy of GrandMaster Clock:
• Detection of Clock Domain ID
• Keeping Track of Separate Sync Messages and Time Stamps
Summary and Conclusion

- Automotive Networking Must Address Mission Critical Requirements
- Ethernet TSN Has Structures for Redundant Links to Mission Critical End Device
- Redundant Data Paths Ensure Mission Critical Network Links
- Careful Analysis of Network Hops Ensures Guaranteed Latency
- Redundant Clock Domains Could Ensure Seamless Continuity ofMission Critical Network Operation