

Don Pannell

Fellow
Automotive Ethernet Networking

Sep 2019 | IP Tech Day - Detroit

SECURE CONNECTIONS FOR A SMARTER WORLD

The Need

- ➤ Ethernet's high speeds saves wires in Zonal networks
- >And Zonal networks bring new requirements that (TSN) solves
 - >Multiple Domains using the same wire
 - ➤Yet each Domain needs to know it's data will get delivered in the needed maximum time as it no longer has its own dedicated wire!
 - ➤ How to guarantee & plan the maximum bounded latency for each flow is the focus of this presentation

Overview

- This presentation focuses on the TSN standards that affect bounded latency of flows through the Automotive Ethernet network
- ➤ It briefly lists the unique problems each of these Time Sensitive Networking (TSN) standard solves & the relative 'costs' of using each tool
- ➤ Based on these numbers, a per-hop metric is proposed, to help determine which TSN tool should be used and when
- > This priority of tool usage, makes the job of "Engineering" the network easier via to the step-by-step process described

List of Available TSN Tools for Controlling Latency

Standard's Name:	Also Known As:
Strict Priority	802.1p-1998 / QoS
Forwarding & Queueing for Time- Sensitive Streams	802.1Qav-2009 / Credit Based Shaper or FQTSS
Enhancements for Scheduled Traffic	802.1Qbv-2015 / Time Aware Shaper
Frame Preemption	802.1Qbu-2016 & 802.3br-2016
Cyclic Queueing & Forwarding	802.1Qch-2017 / Peristaltic Shaper

Note: New tools will become available, e.g., the Asynchronous Traffic Shaping, 802.1Qcr

The Shaper Standards:

What Problems the Standards Solve & How They were Envisioned to be Used

Strict Priority Shaper (Strict) – 802.1p-1998

- ➤ Priority solves the problem that some frames <u>are</u> more important than others
- ➤ It was needed so Network

 Management could work

- Management frames had to get through the Network in order to fix any Network problem
- ➤ The Strict hardware selector is defined as: "Frames are selected from the corresponding queue for transmission only if all queues corresponding to numerically higher values of traffic class ... are empty at the time of selection."

Credit Based Shaper (CBS) – 802.1Qav-2009

- CBS solves the problem that long bursts of data are really bad for the Bridges
- ➤ It was needed so Reserved frames are not dropped

- > It caps the bandwidth a queue can transmit with hardware
- ➤ It de-bursts flows in hardware so that optimized software stacks that try to burst can be used (for streams that are not self-shaping)
 - >I.e., audio from a USB drive vs. audio from a microphone or radio
 - >It allows very small bursts of data to 'catch-up' due to momentary interference so the Reserved data rate can be maintained
 - ➤In AVB, PCP 2,3 are re-mapped above Mgmt since they don't use 100% of the wire

Time Aware Shaper (TAS) – 802.1Qbv-2015

- >TAS delivers the theoretically lowest possible latency for scheduled periodic data
- ➤ It uses significant bandwidth, so is best used as a last resort

- Transmission Gates are added for ALL queues just before the Strict Priority Selector
 - Following a defined periodic schedule, the gates on the queues are opened or closed for a period of time allowing critical traffic to pass without interference
 - ➤ ALL queues are time-gated, but really only 1 or 2 queues are actually "Scheduled" and the "non-Scheduled" queues are left open during the remainder of the time
 - >Any TC can be used for "critical" scheduled traffic (TC 2 in the figure)

Preemption – 802.1Qbu-2016 & 802.3br-2016

- Preemption delivers very low latency for a limited set of non-scheduled data
- Preemption gains the most on slow data links (100 Mb/s)

- Two 802.3 MACs are used, one for "normal" preemptable traffic (pMAC) and one for "express" preempting traffic (eMAC)
 - ➤Only 1 level of preemption is supported & frames < 126 bytes can't be preempted
 - >802.1 allows connection of each TC queues to either MAC if more than one queue connects to a MAC, the Strict selector algorithm is assumed
 - ➤In the figure, TC 1 is effectively above all the other TC's since it can preempt them!

Cyclic Queuing & Forwarding (CQF) – 802.1Qch-2017

- ➤ A fully accurate worst case equation for the Credit Based Shaper (CBS) does not exist
- CQF is a replacement for the Credit Based Shaper for very large, higher speed Networks

- >CQF receives data in an Even time window and transmits it in an Odd time window and visa versa using parallel buffers/queues
 - Can be built using two Traffic Class queues with Even/Odd alternate Time Aware Shaper gating to select only one queue at a time, as long as the input mapping to the two queues is synchronously time switched as well

Latency TSN Tool Comparison

TSN Tool	Silicon Complexity	Engineering Complexity	Wire Efficiency	Comments	
Strict Priority	Low	Easy	100%	Needed component, but it is not deterministic by itself	
Credit Based Shaper	Medium	Easy	100%	All CBS queues are deterministic + next highest TC (for Mgmt)	
Time Aware Shaper	Medium	Hard (>1 TC) Medium (1 TC)	Guard bandIdle Opens	All TAS queues are deterministi	
Frame Preemption	High	Medium but only 1 level deep	Fragment overhead	Fragmentation may affect determinism on the other flows	
Cyclic Queueing	Medium	Medium	50% - FE 90% - GE	Effects are not well know % numbers due to Guard band	

Engineering Complexity is the expected user difficulty or effort, needed to get proper results

Wire Efficiency is how much data can go down the wire – this includes critical data and background data

Note: Preemption is the only standard that requires support on both sides of the wire

Per Hop Latency – Credit Based Shaper

- Class A ≈ tInterval + MaxFrameSize
 - \succ_{t} Interval = observation interval of the Class (125 uSec for AVB but can be changed)
 - ▶ MaxFrameSize = the maximum size of an interfering frame + gaps, etc.
 - ➤This is a good rule-of-thumb equation that results in slightly larger numbers than the equation in 802.1BA-2011 subclause 6.5
- Class B ≈ tInterval + MaxFrameSize + TimeForAllHigherFrames
 - → tTimeForAllHigherFrames = the time to transmit all Class A frames (+ gaps, etc.) for the duration of Class B's tInterval (which is typically multiple Class A tIntervals)
- Class C ≈ tInterval + tMaxFrameSize + tTimeForAllHigherFrames
 - >Where tTimeForAllHigherFrames includes Class A & Class B frames
- >Etc.

Per Hop Latency – Credit Based Shaper – part 2

- Class A ≈ _tInterval + _tMaxFrameSize
 - >For a 64 byte frame in a 125uSec observation interval the worst case # is:
 - >On a 100BASE link ≈ 125 uSec + 124 uSec = 249 uSec per hop
 - >On a 1000BASE link ≈ 125 uSec + 13 uSec = 138 uSec per hop
- >The observation interval is a significant portion of these latencies
 - ➤ Lower worst case latency numbers are possible on 1000BASE links by using shorter observation intervals, but don't go below the time of that MaxFrameSize
 - >But lowering this number reduces latency at the cost of capacity
 - > 1000 vs 100 is either 10x lower latency or 10x the capacity or somewhere in between

Note: The simplified equation on the previous page is useful for calculating the worst case latency range for a fully loaded (i.e., 75% bandwidth allocation) on a Class A link. A scheduling tool needs to use the equation that is in IEEE 802.1BA. Also see: http://www.ieee802.org/1/files/public/docs2011/ba-boiger-per-hop-class-a-wc-latency-0311.pdf

Per Hop Latency – Time Aware Shaper

- ➤ Store & Forward with Gate Open ≈ _tDevice + _tFrameSize
 - > Device = the delay through a Store & Forward bridge
 - ➤ Good Rule-of-Thumb is 2 x 512 bit times + Cable delay
 - > or 10.5 uSec for 100BASE & 1.5 uSec for 1GBASE
 - ► FrameSize = the size of the frame passing through the bridge
 - ➤ For more information see http://www.ieee802.org/1/files/public/docs2011/new-pannell-latency-options-0311-v1.pdf
- > For a 64 byte frame the worst case # is:
 - >On a 100BASE link ≈ 10.5 uSec + 5.2 uSec = 15.7 uSec per hop
 - >On a 1000BASE link ≈ 1.5 uSec + 0.5 uSec = 2.0 uSec per hop

Per Hop Latency – Frame Preemption

- >Store & Forward w/ Preemption ≈ _tDevice + _tFrameSize + _tFramelet
 - ▶ Device = the delay through a Store & Forward bridge
 - ➤ Good Rule-of-Thumb is 2 x 512 bit times + Cable delay
 - > or 10.5 uSec for 100BASE & 1.5 uSec for 1GBASE
 - >_tFrameSize = the size of the frame passing through the bridge
 - Framelet = 126 bytes + overhead, as this size interfering frame can't be preempted
 - > For more information see http://www.ieee802.org/1/files/public/docs2011/new-avb-pannell-latency-options-1111-v2.pdf
- > For a 64 byte frame the worst case # is:
 - \triangleright On a 100BASE link ≈ 10.5 uSec + 5.2 uSec + 11.7 uSec = 27.4 uSec per hop
 - >On a 1000BASE link \approx 1.5 uSec + 0.5 uSec + 1.2 uSec = 3.2 uSec per hop

Note: Preemption requires support on both sides of the wire

Per Hop Latency – Cyclic Queueing

- > Even/Odd Buffering ≈ _tInterval * 2
 - ▶ Interval = observation interval of the Class (must be at least 2x MaxFrameSize)
 - ▶ tMaxFrameSize = the maximum size of an interfering frame + gaps, etc. which is needed because, when using Qbv for the Even/Odd queue selection, a guard band is needed
 - ➤ The 1st Interval is the reception of the data
 - >The 2nd the transmission of the data where the worst case frame is at the end
- > For a 64 byte frame the worst case # is:
 - >On a 100BASE link ≈ 250 uSec * 2 = 500 uSec per hop
 - >On a 1000BASE link ≈ 125 uSec * 2 = 250 uSec per hop

Latency TSN Tool Comparison in Lowest Latency Order

TSN Tool	Engineering Complexity	Wire Efficiency	Worst Case Latency for the Examples	Ranking
Time Aware Shaper	Hard (>1 TC) Medium (1 TC)	Guard bandIdle Opens	15.7 uSec FE Hop 2.0 uSec GE Hop	2
Frame Preemption	Medium but only 1 level deep	Fragment overhead	27.4 uSec FE Hop 3.2 uSec GE Hop	3
Credit Based Shaper	Easy	100%	249 uSec FE Hop 138 uSec GE Hop	1
Cyclic Queueing	Medium	50% - FE 90% - GE	500 uSec FE Hop 250 uSec GE Hop	4
Strict Priority	Easy	100%	Can't determine	N/A

^{1 =} Multiple queues can be used with different observation intervals/latencies

^{2 &}amp; 3 = Assuming only 1 TC is used for very limited, very critical traffic, 2 is more available with lower latencies

^{4 =} Effectively requires GE or faster, it's not generally available, and its effects over different link speeds is not well understood

Proposed Tool Usage Order

- > Process the critical flows in the lowest to highest latency order
- First insure the total bandwidth through any link is not more that 75% loaded with these flows
 - ➤ This # could go a bit higher, but 60% to 75% is a good place to start
- ➤ Start with the Credit Based Shaper
 - Select an Observation Interval that is as large as possible that delivers the required latency over the path(s) the flow uses
 - ➤If the default 125 uSec Observation Interval is too long, reduce it, but don't go < 125 uSec on 100BASE links
 - ➤If that doesn't work, use Time Aware Shaping &/or Preemption as last resorts
 - >As these are limited resource that are less wire efficient
 - >Subtract any wire efficiency loss as used bandwidth toward the 75% critical flow limit

Proposed Tool Usage Order

- Multiple Credit Based Shaper's w/increasing Observation Intervals can be used – More than two Classes can be used if needed!
 - >Start by loading each Class no more than 20% of the link's bandwidth
 - >Keep in mind that the sum total of ALL Reserved flows, & their frame (IFG, etc.) & scheduler overhead (Qbv & Qbu), must not exceed 75% of any one link's bandwidth
 - ➤ If this happens, try an alternate path for the flow
 - >60% may be a better starting number so that new flows can fit in easier
 - > CAN network loading is typically started at 50% so new messages can be added
 - > To fix bugs & oversites
 - And to add new features
- ➤ Network Mgmt must be the highest non-CBS Traffic Class
- >The remaining "non-Reserved" flows will use the remainder of the unused bandwidth in a Best Effort fashion

Summary & Proposed Queueing Model

- These standards are designed to work together
- Multiple different data delivery requirements/latencies can be supported on the same wire

- The Credit Based Shaper is not limited to just Audio & Video data & it is not limited to the AVP Profile's plug-&-play parameters
- There is a current limit of 8 Priority Code Points (PCP) that are effectively used to indicate the "type of service" a flow needs
- >Automotive networks are Engineered, but let the hardware enforce the needed guarantees to make the job much simpler

SECURE CONNECTIONS FOR A SMARTER WORLD

Disclaimers

- >This is a really hard concept that has been simplified so that an easy starting point on which shaper to use for a target flow can be made
- >The listed latency numbers are in the correct range but they are still estimates. For example:
 - >A generic bridge delay is used vs. the actual delay in the specific bridge you are using
 - >All latency numbers use 64 byte data frames. In most cases, larger data frames will impact the latency numbers.
 - ➤ Cable delay is mostly ignored which is approximately 80ns for 15 meters
 - >Look at the referenced presentations & others on the same subject in the same areas
- >As a rule-of-thumb for link speed conversion in a bridge:
 - >For MaxFrameSize & Framelet use the egress link speed, for FrameSize use the ingress link speed and for Device use the faster link speed of the two

IEEE 802.1 Automotive AVB and TSN Standards Handout

Stream Quality of Synchroni-Transport Redundancy Security Reservation zation Service **AVB** 802.1Qav-2009 1722-2011 802.1X-2010 802.1Qat-2010 802.1AS-2011 802.1BA-2009 802.1Xbx-2014 **Credit Based** Media SRP (now Q 802.1Xck-2018 **aPTP** Shaper (now Q The AVB **Transport** clause 35) **Network Access** clause 34) **Profile Protocol** 802.1Qbv-2015 **Time Aware** Shaper 802.1CB-2017 802.1Qci-2017 802.1Qcc-2018 802.1Qbu-2016 1722-2016 Frame **Policina** Enhanced SRP & 802.3br-2016 Replication & Adds CAN. 802.1AS-Rev Preemption Elimination FlexRay, LIN, + **TSN** Redundant 802.1Qca-2015 802.1Qch-2017 more 802.1AEcg-2017 **qPTP** Audio/Video Path Control & Cyclic Queue 802.1AS-Rev (end-to-end) Reservation Forwarding Redundant Transports **MACSec qPTP** 802.1Qcr Asynchronous Shaping

IEEE 802.3 Automotive Ethernet PHY Standards Handout

10 Mbit/s 100 Mbit/s 1000 Mbit/s 2500 Mbit/s 10 Gbit/s Next xGMII/ **MAC Interface** xMII/ SNI, xMII/ **SGMII OC-SGMII USXGMII** Digital/ **SGMII SGMII** OC-SGMII 2500BASE-X XFI **SERDES OC-SGMII OC-SGMII** 1000BASE-X 802.3cg 10BASE-T1S 802.3bw-2015 802.3bp-2016 802.3ch 802.3ch Media 15m Point to Interface Point 100BASE-T1 1000BASE-T1 10GBASE-T1 2500BASE-T1 Single Twisted 25m Multi-Drop 15m Point to 15m Point to 15m Point to 15m Point to Pair **Point Point** Point 10BASE-T1L **Point** 1000m Point to **Point**