Do we need Data Distribution Service (DDS) and service-oriented architecture for automotive applications?

Prachi Joshi, Prathap Venugopal, Massimo Osella
General Motors
Flow of presentation...

• Future needs of architecture platforms
 • Computation and performance demands on processor
 • Bandwidth demands on communication

• AUTOSAR Adaptive
 • Service Oriented Architecture

• Network bindings for ara::com
 • SOME/IP
 • DDS
 • IPC

• Conclusion
Future of automotive...

Feature Requirements
- Highly automated driving
- Back-end connectivity
- V2X
- Electric vehicles

Growing demand on
- Computation
- Bandwidth requirements
- Software quality
- Remote software updates

Standard architecture
- Enabling integration of different manufacturers’ software, in-house software development
Trends in E/E Architectures

- New types of in vehicle computers are required to fulfill the needs of
 - Performance,
 - Flexibility and
 - Connectivity

- But
 - Backwards compatibility with existing solutions,
 - Fulfillment of increasing requirements for safety and security is a must as well.

Slide from: T. Scharnhorst, AUTOSAR spokesperson, AUTOSAR Adaptive Platform – Progress on the Software Framework for Intelligent, Safe and Secure Mobility
Future of mobility... Software driven

New Requirements
- Integration with off-Board Software Systems
- Secure Software Upgrades, Updates
- Central control centers to process customer/environment inputs and conditions
- Integration of in-Vehicle Software Systems: Central Control, Smart Actuators and localized Sensor/Actuator Control with Security & Safety
- Scalable power/thermal technologies to efficiently run central computing centers

Capabilities and Technologies
- Service-based communication
- Connectivity to Industrial Internet with security framework
- In-Vehicle Large Scale Software Integrations making use of new ECU HW technologies using modern SW languages
- ECU Classifications: Central Compute, Integrated Control Units, I/O control Units
- In-Vehicle High Speed Communication
- ECU Hardware, Compute technologies, heterogeneous systems (Many-core, GPU, FPGA, Accelerators, etc.)
- Evolutionary/Revolutionary E/E Architecture to enable all of the above

Industrial IoT Connext Conference 2018: Rick Flores
What is SOA?

- Service oriented architecture defines a ‘server’ which is the provider for a service/data and a ‘client’ that subscribes to the desired service/data

- SOA has been used for years in the IT industry for distributed systems
 - Players from IoT world such as Google, Amazon, pave the path to digitalization

- Applications are loosely coupled and communicate over a service bus as middleware
Signal vs SOA

Main reasons of adoption:

• Flexibility, scalability and reusability of code
• Partial updates of the system can be performed
• “Soft” migration scenarios are also possible
AUTOSAR Adaptive

• The standard contains interfaces required for developing automotive ECUs running on state-of-the-art multicore microprocessors.

• With the Adaptive Platform, communication between software functionalities is no longer conducted in cyclic bursts, but is service-oriented.

• Lower-level communication is no longer based on CAN or other classic automotive bus systems, which use dedicated protocols, but on Ethernet.
Middleware: SOME/IP

SOME/IP dynamically creates the connection between the service provider and service consumer at runtime – and not at system design time.

- Serialization
- RPC
- Service Discovery
- Publish/Subscribe
- Segmentation of UDP messages

Designed to fit devices of different size, and different OS.
Middleware: DDS

- DDS (Data Distribution Service) targets the broader Industrial IoT domain.
- It is a family of open standards published by the Object Management Group (OMG).
- Was specifically designed for distributed real-time systems, and is used in many industries including transportation, energy, medical systems, industrial automation, aerospace and defense, etc.
- Uses Real Time Publish Subscribe (RTPS)
- Offers Quality of Service (QoS) mechanisms
- DDS was introduced as the network binding for ara::com

Reference: https://omg.org
How to evaluate SOME/IP vs DDS as network binding for ara::com?

Performance based evaluation
- End-to-end latency, throughput, jitter, CPU & memory usage

Functional evaluation
- Based on Quality of services (QoS) such as reliability, deadline, priority, ownership, content filters, etc., from DDS

Other factors:
- Cloud connectivity
- Compatibility with legacy systems
- System design capability (toolchain and processes)
Sample use cases for performance based evaluation

<table>
<thead>
<tr>
<th>Use case</th>
<th>Size</th>
<th>Sampling rate</th>
<th>Latency req.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidar</td>
<td>250B</td>
<td>10ms</td>
<td>10ms</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>100B</td>
<td>20ms</td>
<td>20ms</td>
</tr>
<tr>
<td>ADAS sensors</td>
<td>10KB</td>
<td>10ms</td>
<td>10ms</td>
</tr>
<tr>
<td>30fps Video- ADAS(100Mbps)</td>
<td>43KB</td>
<td>33ms</td>
<td>33ms</td>
</tr>
<tr>
<td>30fps Video- ADAS(1Gbps)</td>
<td>43KB</td>
<td>10ms</td>
<td>16ms</td>
</tr>
<tr>
<td>Raw 30fps Video- Automated driving</td>
<td>6.9MB</td>
<td>33ms</td>
<td>33ms</td>
</tr>
<tr>
<td>(10Gbps)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ref: Giancarlo Vasta, Lucia Lo Bello, TechDay 2018
Integration of platforms

SOME/IP Use cases include:
Communication between Classic and Adaptive
Signal to Service translation
Legacy systems

DDS Use cases include:
Cloud connectivity
Non-AUTOSAR applications
More robust Quality of Service mechanisms
Applications for automated driving, V2X demand high computation and bandwidth

Moving towards Ethernet and SOA, moving towards Adaptive AUTOSAR

SOME/IP and DDS as middleware for Adaptive AUTOSAR

Evaluation of SOME/IP and DDS can be based on performance, quality of service requirements, applicability.

DDS seems promising but we need experimental data to evaluate

- Suitable for ADAS applications
- Also need to measure overhead of CPU and memory usage
Future Work

Quantitative and qualitative analyses with SOME/IP and DDS over ara::com

Network layer must be integrated with DDS QoS policies to enforce and synchronize time-based guarantees

Analyze the integration of DDS Ethernet-TSN to enable traffic shaping, priority scheduling, etc., based on application’s QoS requirements
Questions?
Acknowledgments

A note of thanks to Rick Flores, GM Technical Fellow, for his valuable feedback.