Security areas and modular IDPS architecture design elements protecting Automotive Ethernet Networks

2019 IEEE-SA Ethernet & IP @ Automotive Technology Day – Detroit
Dr. Georg Gaderer & Dr. Michael Ziehensack, Elektrobit
Motivation

• Classical Dependability is a well known and throughout the automotive industry well mastered topic

• Nowadays we see several needs raising
 – Raising data-rate of communication (CAN, LIN, FR vs. GBit Ethernet)
 – Raising computing effort (simple logic vs. High Performance, multicore computing)
 – Raising complexity (window control vs. Piloted driving)
 – Rase of connectivity to outside world (simple OBD connector vs. Update over the air)

This increases the focus on security, yet strengthening the safety aspect (Integrity, Availability)
Protecting Automotive Ethernet Networks

Automotive System Security Layers

- Secure Environment
- Secure Ext. Comm. & Interfaces
- Secure Network Segmentation
- Secure OnBoard Comm.
- Secure Platform (HW, Boot, Update, Separation)

Multi-Level Communication Security Architecture

- **Level 1**: restrict access to the network
- **Level 2**: secure onboard communication
- **Level 3**: apply data usage policies
- **Level 4**: detect anomalies and defend

Focus of presentation
Security Areas

What to separate?

– **Vehicle Functions according to criticality and trust level** grouped in security areas
– For example,
 • security area with highly critical functions (breaking, steering, ...)
 • security areas with HMI functions ...
 • security area with functions that contain external interfaces (mobile connection, remote key, WLAN, V2G, ...)

How to separate?

– **Physical**: Domain E/E Architecture (physical)
– **Logical**: VLANs, IP Subnets for new E2E architectures with mixed topology (e.g., centralized architecture with no physical separation or zonal E/E arch.)
– **Gateways**: Traffic between the security areas is only possible between adjacent areas via a gateway
Security Areas

Level of Separation?

- **Goal**: increase the number of borders to cross between security areas
 - Like an onion skin, the **security areas are nested into each other**, with the innermost security area offering the highest level of protection, e.g., a frame from the cloud must never reach a breaking ECU directly.
 - End nodes can only be part of a single security area.

- **Gateways** (Security Area Crossings)
 - Communication between areas only via dedicated gateways such as, **VLAN Bridges, IP routers, Application Level Gateways**
 - Dedicated gateways shall provide a **Firewall with deep packet inspection** (e.g., check of VLAN, MAC/IP-addresses, port numbers, L5+ protocol type, ...)

Variant A:
- Separation based on domains
- no hierarchy beside external connection
- Max. 2 borders
- Comparison with IT: Sec Area 0 = public network Sec Area 1 = DMZ Sec Area 2 = private network

Variant B:
- Separation based on criticality
- multiple hierarchy levels
- Max. 3 borders
Example for a Security Area Crossing

IP Router with Firewall

- **Switch Hardware**
 - CPU
 - Eth Ctrl
 - Switch Core

- **EB Switch Firmware**
 - OS
 - IP Router
 - IP Stack
 - Eth Driver
 - Firewall

Service Proxy (application level gateway)

- **Network 1**
 - Client (C)
 - Server (S)
 - **DPI** (Deep Packet Inspection)

- **Network 2**
 - Client (C)
 - Server (S)

- **Firewall**
 - **VM** (Virtual Machine)
 - **Net 1**
 - **Net 2**

- **One to three VMs depending on security level**

- **Service 1**
 - Client on Net1 uses Server on Net2

- **Service 2**
 - Client on Net2 uses Server on Net1

Efficient application data exchange (blocks network frames)
Intrusion deduction and prevention System (IDPS)

Intrusion Detection
- Traffic Monitoring
 - Location: Host
 - Layer: Application
- IP Security Events
 - Location: Host
 - Layer: UDP/TCP
- IP Traffic
 - Location: Host, Switch, Firewall, Router
 - On demand mirroring
- IP Statistics
 - Location: Host, Router
 - Layer: IP
- Port Statistics
 - Location: Switch
 - Layer: MAC, Phy

Network Stack
- Frame Header
- Frame Data
- IP Header
- IP Data
- TCP/UDP Header

Intrusion prevention
- Traffic Monitoring
 - Location: Host
 - Layer: context aware Application
 - Plausibilisatoin in Application
- IP Security Events
 - Location: Host
 - Layer: UDP/TCP
 - Firewall, stateful firewall
 - IP Traffic limitation, whitelists
- IP Traffic
 - Location: Host, Switch, Firewall, Router
 - Layer: all, network setup
 - IP Traffic limitation, whitelists
- IP Statistics
 - Location: Host, Router
 - Layer: IP
 - VLANs, Port Whitelists
- Port Statistics
 - Location: Switch
 - Layer: MAC, Switch Config
 - Port Checking, VLANs
IDS types

<table>
<thead>
<tr>
<th>Host IDS</th>
<th>Network IDS</th>
<th>Hybrid IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzes</td>
<td>• internals of a computing system and • Host network interfaces on a ingress packet level</td>
<td>• Packets in the network to detect suspicious activities • Can be on a packet or packet statistics level</td>
</tr>
<tr>
<td>Pros</td>
<td>One can instrument on every layer • Can monitor encrypted communication if directed to the host</td>
<td>• Independent from target system</td>
</tr>
<tr>
<td>Cons</td>
<td>• Depends on protocol stack of the host • Cannot detect anomalies in the whole network</td>
<td>• A full coverage would require mirroring of all packets • Unefficient, thus usually not done • Cannot monitor encrypted packets</td>
</tr>
</tbody>
</table>
Attack Patterns and detection mechanisms

<table>
<thead>
<tr>
<th>Attack Pattern</th>
<th>Host IDS</th>
<th>Network IDS</th>
<th>Hybrid IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Scan from one host</td>
<td>Most cases detectable</td>
<td>Difficult to detect but possible</td>
<td>Additional data from Network IDS may improve Host IDS</td>
</tr>
<tr>
<td>Distributed port scan</td>
<td>Difficult to detect</td>
<td>Many cases detectable</td>
<td>Additional data from Host IDS may improve Network IDS</td>
</tr>
<tr>
<td>Buffer overflow attack</td>
<td>Many techniques for detection exist</td>
<td>undetectable</td>
<td>Same as Host IDS</td>
</tr>
<tr>
<td>Denial of service attack (non distributed)</td>
<td>Detectable</td>
<td>Detectable and easy to isolate</td>
<td>Additional Data from Host IDS may improve Network IDS</td>
</tr>
<tr>
<td>Denial of service attack (distributed, e.g., gateway)</td>
<td>Detectable, difficult to isolate</td>
<td>Difficult to detect</td>
<td>Detectable, difficult to isolate</td>
</tr>
<tr>
<td>Man in the middle</td>
<td>Difficult to detect</td>
<td>May be detected</td>
<td>May be detected</td>
</tr>
</tbody>
</table>
IDS Sensor Examples

Where, what and How

<table>
<thead>
<tr>
<th>Location</th>
<th>Data</th>
<th>Type*</th>
<th>Implementation</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network IDS (Switch)</td>
<td>Port Statistics</td>
<td>(M)</td>
<td>Traffic statistics per port</td>
<td>Hardware supported ingress sampling needed</td>
</tr>
<tr>
<td>Host IDS (Host Ethernet Interface, Switch firmware, router)</td>
<td>IP Statistics</td>
<td>(M)</td>
<td>Table statistics per flow (Layer 4) Sampling of configuration interface data</td>
<td>Hardware supported ingress sampling needed</td>
</tr>
<tr>
<td>Network IDS (Switch, Switch Firmware, Router)</td>
<td>IP Traffic duplication</td>
<td>(D)</td>
<td>Duplicate matching packets acc. To a filter</td>
<td>Layer 2 filtering support needed</td>
</tr>
<tr>
<td>Host IDS (Host Ethernet Interface, Firewall)</td>
<td>IP security Events</td>
<td>(D)</td>
<td>Forward dropped frames (or metadata)</td>
<td>e.g., frames out of spec (comm. Matrix)</td>
</tr>
</tbody>
</table>

*Sensor Type:
- (M)etadata (Port, protocol statistics)
- (D)eepl Packet Inspection (Frame by frame inspection, flow analysis)
Modular IDPS Architecture

Sensors, actuators and controllers

- Sensors and actuators are usually paired
- Each sensor/actuator needs unified interface (CONN)
- Sensors and actuators for VM internal parts are not shown
- SOC* Platform is connected via gateway
- Controller do an anomaly detection based on sensor data
The Impact-Automatism-Latency tradeoff

Influencing factors of IDSPs reactions

Intrusion detection might end up in extensive decisions. Those are dependent on level

- The Latency of decision: from a certain level on one might want to have human in the loop (e.g., grounding of a whole fleet)

- The Authority of an automatism: on a low level decisions can be taken easier (e.g., discard packets with security violation)

- The Impact: on a higher level decisions influence a bigger portion of the system
Summary

• Protect automotive networks is important, because of safety, legal and commercial requirements
• Security areas have been defined to restrict the attack surface
• Crossing Security areas are limited to gateways with firewalls and deep packet inspection
• EB’s modular IDPS consists of sensors, actuators and controllers for efficient intrusion detection
• Anomaly detection is done on different levels considering latency, automation level and impact

Thank you for your attention!

Author information

Dr. Georg Gaderer, Elektrobit
Senior Manager, Car Infrastructure Software
greg.gaderer@elektrobit.com

Dr. Michael Ziehensack, Elektrobit
VP, Car Infrastructure Software
michael.ziehensack@elektrobit.com
Get in touch!

sales@elektrobit.com
www.elektrobit.com

Restricted Network Access
Secure Onboard Communication
Data Usage Policies
Detection & Defense