Quest for Autonomous Vehicles Safety Standardisation:
Automotive Radar Standards and Verification

Kasra Haghighi
Fahimeh Rafieinia
INTRODUCTION TO AUTONOMOUS DRIVING AND ADAS PROMISES

- Autonomous driving is revolutionising future mobility and car ownership
- Autonomous vehicles should create much higher safety than human drivers
- ADAS is growing beyond level 2 to level2+ and 3, demanding less responsibility from drivers
- The definition of ADAS features is not unified between car manufacturers
- There is no standard for autonomy yet!
CHALLENGES FOR DEPLOYMENT AND UTILIZATION OF ADAS/AD

- Millions of kilometres of test-driving for demonstrating the safety of ADAS/AD
- Various sensors and complicated systems
- Need for “close to real-life” setups for extensive reliability tests
- Agile development is established in automotive industry, demanding even more testing
WHY TEST AND VERIFICATION IS DIFFICULT

- Different sensors need different tools to be tested
- Complex systems are hard to verify
- Long expeditions is needed to test in real-life
- Sensors and functions need to be tested under rare and dangerous traffic scenarios
- A lot of cases and scenarios exists for verification
- Ground truth (knowledge about actual scenario) is needed
STANDARDIZATION EFFORTS FOR ADAS/AD

- SAE (Society of Automotive Engineers): Standards on levels of automation
- IEEE: P2020 Standard on automotive image quality
- EuroNCAP: AES, AEB,
- ETSI and FCC
EXPECTATIONS OF RADAR STANDARDS FOR ADAS/AD

- Frequency band, radiated power and out of band emissions
- Design features, such as antenna FOV, minimum and maximum detection range, resolutions, etc.
- Radar performance in terms of
 - False alarm and mis-detection probabilities
 - Number of detectable targets
 - Detection of Vulnerable Road Users (VRUs)
 - Reliability in severe weather conditions, ice, snow, etc.
 - Interference detection and mitigation
RADAR VERIFICATION EXPECTATIONS

- Automotive radars need to detect, classify and track slowly moving pedestrians or animals as well as fast moving vehicles

- Radar test systems must be able to create targets with:
 - Minimum distances < 30cm and max distance > 300m
 - More than 50 reflection points
 - Dynamic range > 80dB
 - FoV > 80 degrees
 - Agile angular perception for all targets
 - Micro-Doppler signatures
INTERFERENCE EFFECT ON RADAR DETECTIONS

- Widespread use of automotive radars
- Radars facing unintentional interference/jamming
- Radar losing track of real target
- Compromised safety
TESTING MECHANISMS FOR RADAR VALIDATION

- Radar target simulators (RTS) use
 - Delay method
 - Frequency spectrum method
- Calibration and alignment
- HIL / VIL testing
 - Sensor fusion
 - Crowded urban scenarios
 - Effect of fascia, emblem and paint
DIFFERENT STAKEHOLDERS FOR RADAR STANDARDISATION

- OEMs
- Tier-1s
- Testing agencies
- HIL manufacturers
- Environment Simulators
- EoL station manufacturers
- Workshops
- Car inspections
- etc.