Insights into the performance and configuration of TCP in Automotive Ethernet Networks

Jörn MIGGE, RealTime-at-Work (RTaW)
Nicolas NAVET, University of Luxembourg

2018 IEEE Standards Association (IEEE-SA)
Ethernet & IP @ Automotive Technology Day
9-10 October 2018 | London, England
Use-cases for TCP in future vehicles

- Service-Oriented Architectures
- Any TCP-based applications or protocols
- Diagnostics & flashing
- Some/IP
- e.g.: FTP, HTTP, SSH, SIP, car2x, cloud-based services, electric vehicle charging,
- Standard TCP/IP protocols + sockets speed-up the development of applications requiring off/on-board reliable communications
- Ethernet TSN

DoIP
XCP
AUTOSAR TCP/IP stacks

Applications – AUTOSAR SWCs

signals

AUTOSAR RTE

PDUs

Socket Adaptor

sockets

AUTOSAR TCP/IP

UDP

TCP

IPv4 / IPv6

datagrams

Ethernet interface

Adaptive Applications

network binding

AUTOSAR ARA

Runtime for Adaptive Applications

sockets

ADAPTIVE AUTOSAR OS TCP/IP

UDP

TCP

IPv4 / IPv6

datagrams

Ethernet interface

TCP in Automotive Ethernet Networks
Objectives

1. AUTOSAR TCP/IP design choices
2. Maximum achievable TCP performances with & without interfering traffic
3. Guidelines for configuring AUTOSAR TCP/IP for on-board communication
4. Impact of shapers on TCP traffic: illustration with CBS used for video

TCP performances and configuration has been studied for 40+ years, but what about TCP – as specified by AUTOSAR – for in-vehicle communication?

Techniques & toolset

- **Worst-case Traversal Time (WCTT) analysis** – for hard deadline constraints
- **Timing-accurate Simulation** – for TCP throughput constraints
- **Optimization algorithms** for setting the parameters of all supported protocols

Toolset

- **RTaW-Pegase**: modeling / analysis / configuration of automotive Ethernet TSN
- AUTOSAR TCP/IP stack model implemented in RTaW-Pegase
Case-study: Network topology

- **7 video streams (30 FPS)** for vision and ADAS
- **#Nodes**: 8
- **#Switches**: 2
- **#streams**: 47 + TCP streams
- **Load per link (wo TCP streams)**: Min: <1%, max: 35%
- **Link data rates**: 100Mbit/s and 1Gbit/s (1 link)

- TCP connection from ECU1 to ECU6
- Loads shown for interfering traffic only – not TCP streams
Case-study: Traffic

Top priority

- Command & Control (CC)
 - 32 streams, 256 to 1024 byte frames
 - 5ms to 80ms period and deadlines
 - Hard deadline constraints

Second priority level

- Audio Streams
 - 8 streams: 128 and 256 byte frames
 - 1.25ms period and deadline
 - Deadline constraints (soft)

Third priority level

- Video streams
 - 3 streams (vision): 30x1400 byte frames every 33ms – deadline = 33ms
 - 4 streams (ADAS): 15x1000 bytes frames every 33ms – deadline = 10ms
 - Hard and soft deadline constraints

Lowest priority

- TCP streams
 - Bulk data = from 64K to 1MB transfers, or
 - 100ms periodic PDUs data, e.g. from CAN networks

TCP in Automotive Ethernet Networks
AUTOSAR TCP specification
AUTOSAR TCP design choices

– A full-fledged TCP implementation!

Our view: sound design choices but configuration is difficult because
- application specific
- subtle interactions between parameters: e.g. send/receive windows size, TCP task period, Nagle’s algorithm on/off, time-out

– Not included in the specification: selective ack (sack) and timestamp options, recent congestion control algorithms
Bulk traffic: Nagle’s algorithm and delayed ack

– Improve TCP efficiency by postponing both sending of data and sending of ack → buffering on both the sending and receiving sides

64kB = first 43 segments of 1460 bytes ... 200ms later comes last segment → because of Nagle’s algorithm, TCP waits for the delayed ack (200ms). Solution in Autosar is to turn off “Nagle”.
PDU traffic: Nagle detrimental as well

- 3 PDU streams over a TCP connection | 8, 20 and 64 bytes at the lowest priority level
- Maximum latency: from the time the PDU is written in the socket, until receiver reads it

![PDU maximum latencies with and without Nagle]

For PDU’s as well, solution in Autosar is to turn off Nagle’s algorithm

TCP in Automotive Ethernet Networks
Max. achievable performances with TCP
– throughput for bulk traffic
– latencies for PDU traffic
Throughput – no interfering traffic

- Experimental conditions: all mechanisms on but Nagle, event-triggered management of TCP stacks, receive window larger than data, no packet loss

- Max. throughput is quickly reached: 96Mbps of TCP data over 100Mbps links!
- With interfering traffic (not shown), remaining available bandwidth can be fully used too
- But no exponential increase during slow-start ?!
Almost no “slow-start” phase

Expected: throughput growth
Observed: max. throughput from start

- Reduced automotive round-trip times changes the usual behavior of TCP
- Re-examine what we can expect from TCP in the automotive context
PDU latencies vs receiver reading period

- PDU TCP streams = 8, 20 and 64 bytes at the lowest priority level
- Maximum latency | Nagle off | window update sent asap after receiver reads buffer

PDU maximum latencies can be controlled by adjusting receiver’s reading period

Maximum latency ≈ traversal time + reading period

TCPMainFunction may further delay data transfer to application
TCP configuration in a TSN network
Experimental setup

- Interfering streams configured so as to meet their latency constraints
- Video under CBS configured with *Tight-IdleSlope* algorithm = minimum Idle-Slopes allowing to meet deadline constraints
- TCP traffic: 1MB transfers (=685 segments) between ECU1 and ECU6 every 1s
- Minimum throughput over all TCP transfers collected over long simulations: sample of 36000 data points (12 hours of functioning)
- Receiver reads TCP buffer every 1ms
Shaping improves TCP throughput and reduces switch memory usage

CBS improves TCP throughput (up to 30%) and reduces memory requirement (up to 14%) for all parameters – larger gains with smaller TCP transfers more subject to bursts of interfering traffic.
With or without CBS, larger receive windows improve throughput – the gain drops after a threshold that depends on how often receive buffer is read.
In practice, larger receive windows can be detrimental!

- Memory for switch port SW2 to ECU6 set to 30Kb, packet is dropped if memory full
- TCP bulk traffic | average latency | Nagle off

Larger receive windows means more “in-flight” data. Packet losses in switches lead to retransmission after time-out (1s) and drop in throughput!

Receive window size should be set wrt switch memory

TCP throughput vs receive window size

- TCP throughput (Mbps)
- Receive window size in MSS

- without CBS
- with CBS

TCP throughput vs receive window size without CBS

TCP throughput vs receive window size with CBS
Takeways

1. AUTOSAR specifies a full-fledged TCP protocol
 Need to re-examine what we know about TCP in the automotive context

2. AUTOSAR TCP is able to use all of the available bandwidth with minimal latencies – if properly configured and enough memory
 ✓ TCP for soft real-time only as one can just obtain statistical guarantees (i.e., no worst-case analysis)
 ✓ The use of TSN shapers at higher priority levels improves TCP performance and reduces overall memory requirement

3. AUTOSAR TCP configuration choices make a huge difference, parameters cannot be set in isolation
 ✓ E.g. best choices for receive window size & polling period depend on switch memory size
Thank you for your attention!

Questions? Feedback? contact us at jorn.migge@realtimeatwork.com
nicolas.navet@uni.lu
References
References