IEEE, Standards and Automotive Industry Related Initiatives

Rudi Schubert
Director – New Initiatives
r.schubert@ieee.org
IEEE: World’s Largest Professional Association Advancing Technology for Humanity

GLOBAL REACH

420,000+ WORLDWIDE MEMBERS

46 TECHNICAL SOCIETIES & COUNCILS

160+ COUNTRIES INVOLVED

TECHNICAL BREADTH

1,800+ ANNUAL CONFERENCES

4+ MILLION TECHNICAL DOCUMENTS

180+ TOP-CITED PERIODICALS
Collaboration is our Foundation

In Academia

In Industry

In The Field

IEEE brings people and technology together for mutual benefit
Worldwide IEEE Offices
IEEE in Europe Snapshot

- IEEE has had a long history in Europe and opened the European Office in Vienna in September 2017
 - ~60,000 IEEE members in Europe
- IEEE-SA holds 2 of its 6 governance meetings a year in Europe; in 2018
- Support European technical communities in industry, academia, research, and governmental institutions
- Engage and participate in public policy by facilitating dialogue between European technologists and policy makers
- Facilitate the commercialization of European research results by developing globally accepted standards
IEEE Standards Association (IEEE-SA)

- **Mission**: Provide a high-quality, market-relevant standardization environment, respected worldwide

20,000

STANDARDS DEVELOPERS

160+

COUNTRIES INVOLVED

1200+

ACTIVE STANDARDS

600+

STANDARDS UNDER DEVELOPMENT

IEEE standards span a broad spectrum of technologies, such as:

- Aerospace Electronics
- Broadband Over Power Lines
- Broadcast Technology
- Clean Technology
- Cognitive Radio
- Design Automation
- Electromagnetic Compatibility
- Green Technology
- Ethernet/WLAN
- Medical Device Communications
- Nanotechnology
- Organic Components
- Portable Battery Technology
- Power Electronics
- Power & Energy
- Radiation/Nuclear
- Reliability
- Transportation Technology
IEEE Foundational Standards

IEEE standards are building blocks for IoT, manufacturing, intelligent vehicles, healthcare, smart grid, smart cities, and more

Internet of Things (IoT)
IEEE P2413™

eHealth
IEEE 11073™ Family

Networking/WLAN
IEEE 802™ Family

Intelligent Vehicles
IEEE 1609™
IEEE 2030.1.1™

Smart Grid
100+ active or in-progress IEEE standards are relevant to the smart grid
IEEE-SA provides industry a framework of solutions to ensure rapid introduction of new technologies to market.
Challenges for the Automotive/Transportation Industry

Technology
V2x communication,
Security,
Fog/cloud computing,
Reliability,
Availability,
Levels of autonomy,
etc.

Politics/Society
Safety,
Sustainability,
Efficiency,
Alignment with moral values and ethical principles,
etc.

Economics
Mobility as a service,
Car sharing,
Data prosumer,
etc.
Advancing the Technologies for Connected Vehicles through Consensus Building

IEEE P2030.1.1
Standard Technical Specifications of a DC Quick and Bi-directional Charger for Use with Electric Vehicles

IEEE P2690

Transportation Electrification
IEEE 2030 and its related standards are the first all-encompassing standards series providing alternative approaches and best practices for achieving smart grid interoperability.

IEEE 1547 Series
A series of standards for distributed power to maximize the benefits of interconnection.

IEEE P1562
Standard for array and battery sizing.

IEEE 1901 Series
Standards relating to broadband connectivity over electric power lines.

Intelligent Transportation Systems
IEEE 1609
A family of standards defining the architecture, services and standard interfaces for secure vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications.

IEEE 1610
Standards for motor vehicle event data recorders.

IEEE 802.11
WLAN to support communication between vehicles and the roadside and between vehicles while operating at speeds up to a maximum of 200 km/h for communication ranges up to 1000 meters.

Traffic Safety
IEEE 1512
Multiple standards for traffic safety, hazardous materials and public safety incident communications.

Cooperative, Autonomous and Automated Driving
IEEE P2040 Series
A series of standards for connected, automated and intelligent vehicles.

Smart Rail
A wide range of standards relating to electric rail operation including IEEE 11-2000, IEEE 16-2004, P1653.1, P1791, P1833, P1853, P1864, P1887, P1898, P2406, 1536, 1558, 1568, 1570, 1628, 1629, 1630, 1653 series, and 1608. As well as a series of standards relating to communication for rail transit systems, including IEEE 1473, 1474, 1475, 1476, 1477, 1482, 1, and 1483.

And more...
IEEE Standards Coordinating Committee on Transportation (SCC42) leads the coordination of IEEE standardization activities for technologies related to transportation.

Connectivity
IEEE 802.3
Defining the physical layer and data link layer's media access control of wired Ethernet, in local area networks and wide area network applications.

IEEE 802.15
Wireless personal area networks allow the use of wearable and other short-range wireless devices (such as health monitors).

IEEE P2020
Standard for Automotive System Image Quality

IEEE P7001
Transparency of Autonomous Systems

IEEE P2048.11
In-Vehicle Augmented Reality
The IEEE Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

An incubation space for new standards and solutions, certifications and codes of conduct, and consensus building for ethical implementation of intelligent technologies

ABOUT

The purpose of this Initiative is to ensure every technologist is educated, trained, and empowered to prioritize ethical considerations in the design and development of autonomous and intelligent systems.

- View specifics regarding the Mission and deliverables for the Initiative.
- See a list of The Initiative's Executive and other Committees.
- Learn more from Frequently Asked Questions.

Ethically Aligned Design, Version 1 - Request For Input

Ethically Aligned Design: A Vision for Prioritizing Human Wellbeing with Artificial Intelligence and Autonomous Systems represents the collective input of over one hundred global thought leaders from academia, science, government and corporate sectors in the fields of Artificial Intelligence, ethics, philosophy, and policy.
General Principles *(Ethically Aligned Design)*

- **Principle 4 - Transparency**
 - “For disruptive technologies, such as driverless cars, a certain level of transparency to wider society is needed to build public confidence in the technology, promote safer practices, and facilitate wider societal adoption.”

- **Principle 5 - A/IS Technology Misuse and Awareness of It**
 - “New technologies give rise to greater risk of misuse, and this is especially true for A/IS. A/IS increases the impact of risks such as hacking, the misuse of personal data, “gaming,” or exploitation (e.g., of vulnerable users by unscrupulous parties). These are not theoretical risks. Cases of A/IS hacking have already been widely reported, such as with driverless cars.”
Affective Technology

- IEEE Global Initiative Affective Committee
 - Ethical aspects of “robotic nudging”
 - Disclosure and informed consent necessary to build trust

- IEEE Global Initiative Personal Data Committee
 - Need user controlled data exchange models to build trust
 - Legal issues, re: driver / rider liability

 > Monitor levels of driver fatigue and distraction to enable appropriate alerts and interventions that correct dangerous driving. An audio or display alert instructs the driver to remain engaged; the seat belt vibrates to jolt the driver to attention.

 > Address handoff challenge between driver and car in semi-autonomous vehicles. When sensing driver fatigue, anger or distraction, the autonomous AI can determine if the car must take over control. And when the driver is alert and engaged, the vehicle can pass back control.

 > Monitor driver anger to enable interventions or route alternatives that avoid road rage. A virtual assistant guides the driver to take a deep breath, the driver’s preferred soothing playlist comes on, the GPS suggests a stop along the way.

 http://go.affectiva.com/auto
IEEE P7000 Standards Working Groups

IEEE P7000™ - Model Process for Addressing Ethical Concerns During System Design
• Values-Based Design to better assess end user / rider values in design

IEEE P7001™ - Transparency of Autonomous Systems
• Provide accountability and traceability to increase safety and trust for consumers

IEEE P7005™ - Standard on Employer Data Governance
• Provide clarity for access and distribution of employee / consumer data in public spaces

IEEE P7006™ - Standard on Personal Data AI Agent Working Group
• Provides riders “Values By Design” machine-readable personalized choices for riding

IEEE P7007™ - Ontological Standard for Ethically driven Robotics and Automation Systems
• Ontology for robotic systems including autonomous vehicles

IEEE P7008™ - Standard for Ethically Driven Nudging for Robotic and Autonomous Systems
• Provides foundational platform for users to distinguish recommendations from manipulation

IEEE P7009™ - Standard for Fail-Safe Design of Autonomous and Semi-Autonomous Systems
• “Human-in-the-loop” priority for autonomous vehicles

IEEE P7012™ - Standard for Machine Readable Personal Privacy Terms
• Provides “beyond GDP” platform for honouring user / driver data and choice
2019 IEEE-SA Ethernet & IP @ Automotive Technology Day

2019 Host: Hyundai
Seoul, South Korea
Fall 2019
Thank you!

IEEE Standards Association

Rudi Schubert
IEEE Standards Association
Director – New Initiatives
r.schubert@ieee.org
+1.732.562.2638 Office

Visit the IEEE-SA web site:
http://standards.ieee.org