

10 Mbps Single Pair Ethernet (10SPE – 10 BASE-T1S)

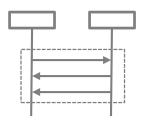
Martin Miller, Senior Manager, Automotive Information Systems

IEEE Ethernet & IP @ Automotive Technology Day

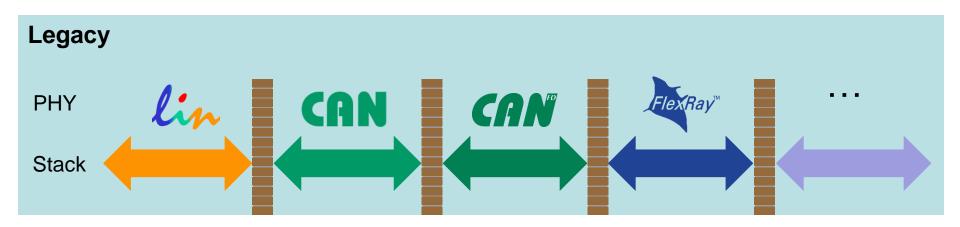
Motivation

• Ethernet/IP-based Network everywhere

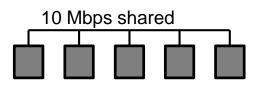
- WWW, IT, Automation, IoT, Cars etc.
- Scalable bandwidth, various PHY layer options, proven SW stacks


• Security and safety are essential

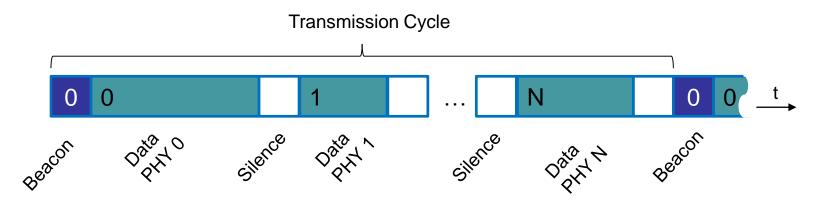
- Security framework
- Safety framework
- Service-oriented architecture manages complexity
 - Encapsulation of functions and data
 - Unifies communication
 - Re-usability and movability of services

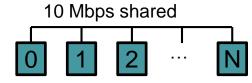

Innovative applications drive data rates

• Legacy implementations run out of steam

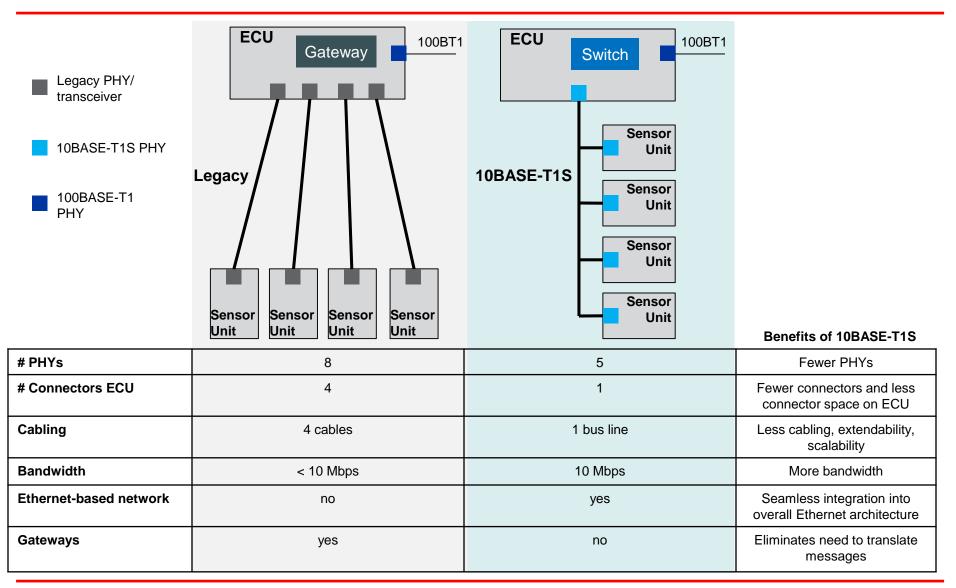


Why not 100BASE-T1?

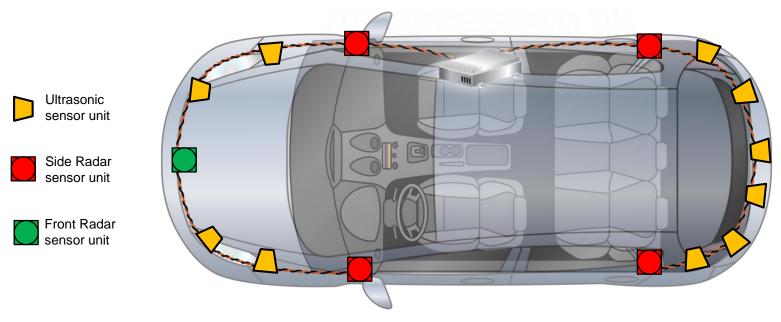

- 10BASE-T1S enables multidrop (bus line)
 - No switches
 - Less cables
 - 10 Mbps shared
 - Half-duplex
 - Up to at least 8 nodes
 - Up to at least 25 m
 - Stubs up to 10 cm
 - Arbitration scheme for optimized data throughput and transmission latency



Optimized data throughput on the bus line


- Goals
 - Full bandwidth utilization
 - Reduce latency
 - Quality of Service (QoS)
- Principle
 - Avoid physical collisions on the medium by organizing the media access
 - Called Physical Layer Collision Avoidance (PLCA)
- How it is done
 - Only the PHY that owns a transmit opportunity is allowed to send data
 - Transmit opportunities are given in a round robin manner
 - A new cycle of transmit opportunities is started when the master node sends a BEACON
 - Works on top of Carrier Sense Multiple Access/Collision Detection (CSMA/CD)

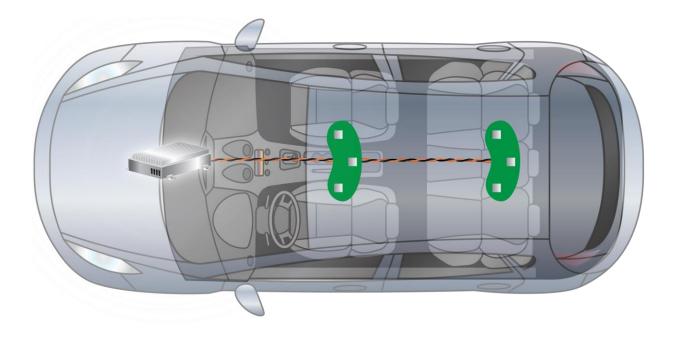
Impact on Cabling



Scalability

- Minimum required connector space at ECU
- Bus line can be expanded by additional sensor units
- Assembly options don't change central ECU

Example: Ultrasonic and Short Range Radar


Example Radar/Ultrasonic

	Ultrasonic	Side Radar	Front Radar	
# Sensors	4	2	1	
Bandwidth	0.3 Mbps	1.5 Mbps	3.5 Mbps	
L1 Packet Length	84	148	148	
# Packets per Sensor per Second	446	1267	2956	
Latency	624 us	624 us	624 us	
Ultrasonic Side Radar Front Radar				

Example: Hands Free Microphones

- Three Sensors on one PCB
- Two PCBs connected to an ECU
- 1722 AVTP as transmission protocol

Example: Hands Free Microphones

	Per PCB	Total
# Sensors	3	6
Sample Frequency	48 kHz	48 kHz
Samples per Packet	3*24	3*24
L1 Packet Length	206	206
# Packets per second	48 kHz / 24 = 2000	4000
Latency (= sample collection + packet transmission)	500 us + 2 * 165 us = 830 us	830 us
Bandwidth	3.3 Mbps	6.6 Mbps

Application Overview

- Hands free microphones
- Active speakers
- Noise vibration harshness
- Parking ECU
 - Radar
 - Ultrasonic
- Engine ECU
- Body ECU
- Active suspension
- Steering/braking system
- Charging units for electric cars
- Traffic sign recognition

Conclusion

- Key Features
 - Multi-drop
 - No collisions
 - Deterministic low latency
- Enabling expansion of Ethernet technology to many additional applications

Thank you!