End-to-End Connectivity Design with
Automotive Ethernet & Service-Oriented Architecture

Wonseon Sim
Hyundai Motor Group

Seung Jun Lee
AirPlug, Inc.
Contents

• Service-Oriented Architecture
 • Background
 • Benefits

• End-to-End Service-Oriented Architecture
 • Challenges & Approach
 • Overall Architecture
 • SoA Adaptor
 • SoA Gateway
 • SD Proxy & Service Router

• Use Case

• Concluding Remarks
Service-oriented Architecture

- Background
- Benefits
[SoA] Background

- Innovation of Automotive Network: **Automotive Ethernet & IP**
 - Faster & Unicast/Multicast/Broadcast Support
 - Logical & Dynamic Configuration

- Innovation also in System/Software area: **Service-Oriented Architecture (SoA)**
 - "Services" : reusable, remotely accessible, independently maintainable
 - An application can consume services regardless of service location.
 - Services provided through SoA Middleware running on top of Automotive Ethernet & IP.
[SoA] Benefit

- Standardized Interface & Location Transparency
 - Reduced Cost for Manufacturing & Test
 - Reduced Time for Development of Vehicles & Connected Car Services
 - Efficient Handling of Models/Options
 - Extendibility

Without SoA

With SoA
End-to-End Service-oriented Architecture

- Challenges & Approach
- Overall Architecture
- SoA Adaptor / SoA Gateway
- SD Proxy / Service Router
[E2E SoA] Challenges

• **Legacy In-vehicle Network (IVN)**
 - Legacy IVN (e.g., CAN) will co-exists with Ethernet at least for a certain time period
 - SoA not directly applicable to these legacy IVN’s

• Needs for Service-level **Interoperation with External Devices**
 - External network characteristic different from that of IVN
 - More Critical Security Issues

• Needs for efficient **Handling of Service-related Information**
 - Added and updated frequently
 - Should be accessible from many interested parties

• Security and Other **Issues** of SoA from the nature of **Distributed System**
 - Services should be found easily but only by allowed ECU’s
 - Services should be accessed easily but only by authorized Service Consumers
 - Interoperability & Resource issues might arise.
[E2E SoA] Approach

• Legacy In-vehicle Network Issues
 → Information/Functions from Legacy IVN transformed to “Services” with SoA Adaptor

• Needs for Service-level Interoperation with External Devices
 → Service-level transparency achieved with SoA Gateway

• Security and Other Issues of SoA from the nature of Distributed System
 → Centralized Service Discovery (SD) architecture using SD Proxy
 → Security- or Resource-Critical Services made accessible through Service Router

→ Efficient and Secure End-to-End Service-oriented Architecture
[E2E SoA] Overall Architecture

• End-to-End Service-oriented Architecture
 • Extended Service-level Transparency and Integrated Service Design
[E2E SoA] SoA Adaptor

• Legacy In-vehicle Network
 • Many ECU’s still work based on legacy IVN like CAN
 • Large portion of vehicle information/functions are from legacy IVN
 • These should be made accessible to new applications on Ethernet-based ECU’s.

• SoA Adaptor
 • Transforms Information/Functions from Legacy IVN to “Services”,
 which applications on any Ethernet-based ECU’s can easily access.
 • On Ethernet side, services are provided on top of SOME/IP protocol.
 • Can be implemented on “bridging ECU” between legacy IVN and Ethernet-based IVN,
 like Domain Control Unit, Zone Controller, etc.
 • Also can be implemented on non-bridging ECU’s only with Ethernet interfaces.
 • Services provided by SoA Adaptor can be changed dynamically.
[E2E SoA] SoA Adaptor

• (Example) SoA Adaptor on Bridging ECU for CAN Networks

![Diagram showing the integration of CAN with Ethernet through an SoA Adaptor]
[E2E SoA] SoA Gateway

• External Devices on External Network
 • Vehicle needs to interwork with external devices like cloud servers and smart devices.
 • Interworking need gets much larger for ADAS and other connected car services.
 • External networks has very different characteristics compared to IVN:
 - availability, bandwidth, latency, cost, etc.
 • Protocols for external connectivity are usually different from those for IVN.
 • Higher security issues when interworking through external networks.

• SoA Gateway
 • Handles issues related with external device/network interworking.
 • Converts Protocols and Translates Services, when needed.
 • Caches external information to deal with availability & cost issues of external networks.
 • Applies Policy and Performs Service-level Access Control.
 • Should be implemented on ECU’s with external connectivity.
[E2E SoA] SoA Gateway

• (Example) SoA Gateway for Cloud Function Interworking
[E2E SoA] SD Proxy

- **Centralized SD** can be achieved using SD Proxy
 - Service discovery messages are exchanged through one central S/W module, called “SD proxy”.
 - **SOME/IP-SD message** can be used also for communication between ECU and SD Proxy

- **Security and Traffic issues** of distributed SD approach can be handled by Centralized SD
 - Each service can be found and subscribed to by only allowed ECU’s.
 - Service availability and search/subscription attempt can be efficiently monitored.

![Diagram of ECU with SD Proxy](image)
[E2E SoA] Service Router

- Issues from distributed nature of SoA can be handled using Service Router
 - Services can be consumed only through Service Router.
 - Service Routing can be applied for selected services: e.g., services with high security level, non-time-critical services, service use across domain.
 - SD Proxy can be used for efficient service routing implementation.
 - Security and Resource Issues can be efficiently handled.
 - Service access can be controlled based on domain, ECU, service or even method.
 - Policy can be also applied dynamically, e.g., depending on IDS module.
Use Case
[Use Case] Battery Status Check & Notification

- **Case 1 – Check battery status & Notify status to user**

 "Battery Check App" consumes two services
 - Gets battery status information: subscribing to "Noti_BatteryStatus"
 - Checks the battery status,
 - Notifies to user, if battery low: invoking "Send_Noti2User"
[Use Case] Battery Status Check & Notification

• Case 2 – Add function to notify message to user’s handset

 “User Noti. Service” App
 - Detects that the driver is not in the car: checking “Ignition On/Off” status and “Door Lock/Unlock” status
 - Sends notification to user’s handset via external network (Bluetooth or SMS): invoking “Send_Noti2Device”

 “Ext. Device Comm. Service” App
 - Detects user’s handset is not connected through Bluetooth
 - Sends SMS to the handset: invoking “Send_SMS2Device” (provided by Cloud through SoA G/W)
[Use Case] Battery Status Check & Notification

• Case 3 – Send command (from external device) to vehicle legacy system

- Cloud Function
 - Gets user’s ignition-on command to re-charge
 - Remotely turn on ignition: *invoking “Ignition ON” (provided by SoA Adaptor through SoA G/W)*

 (Note that “Ignition ON/OFF” method invocation is routed and access-controlled by Service Router)
Concluding Remarks

• Automotive Ethernet & IP brought innovation in automotive system/software architecture: Service-oriented Architecture (SoA)

• SoA concept can be extended to End-to-End ranging from legacy ECU’s to external devices.

• SoA Adaptor and SoA G/W can be used for legacy and external devices, respectively.

• SoA can be efficiently managed by using other SoA Entities like SD proxy and Service Router.

• End-to-End SoA enables fast and efficient deployment of various connected car services.

• Other features like variant handling or Plug-and-Play can also benefit from End-to-End SoA.

• Joint design of SoA and SDN is in progress.