Autonomous Vehicles: The Dawn of a New Era in Automotive

Challenges
- Technology
- Legislation
- Insurance
- Trust

Trust of humans in machine-driven car
The Path Towards Full Autonomy

Level 1-2
Simple Aid

Level 2-3
Decision Assistant

Level 4-5
Self Driving

Local Computing
"Behind" Every Sensor

Centralized Computing
Integrates Input From All Sensors (Sensor Fusion) Similar to a Human Driver’s Brain

High-Speed, Reliable & Secure Nervous System
High-Performance Brain

2010 - 2015
2015 - 2020
2020 - 2025

Compute Power (TFLOPS)
Networking Speed (Gbit/s)

0.1
1
10
100

0.1
1
10
25
Sensor Fusion & Rich Data Drive Bandwidth To Multi-Gig

Cameras
Increasing resolution from 720p to 4K and improving dynamic range

<table>
<thead>
<tr>
<th>Hres</th>
<th>Vres</th>
<th>Fps</th>
<th>8bit</th>
<th>12bit</th>
<th>16bit</th>
<th>20bit</th>
<th>24bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280</td>
<td>720</td>
<td>30</td>
<td>0.22</td>
<td>0.33</td>
<td>0.44</td>
<td>0.55</td>
<td>0.66</td>
</tr>
<tr>
<td>1280</td>
<td>1080</td>
<td>30</td>
<td>0.33</td>
<td>0.50</td>
<td>0.66</td>
<td>0.83</td>
<td>1</td>
</tr>
<tr>
<td>1280</td>
<td>720</td>
<td>60</td>
<td>0.44</td>
<td>0.66</td>
<td>0.88</td>
<td>1.11</td>
<td>1.33</td>
</tr>
<tr>
<td>1920</td>
<td>1080</td>
<td>30</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
<td>1.24</td>
<td>1.49</td>
</tr>
<tr>
<td>1280</td>
<td>1080</td>
<td>60</td>
<td>0.66</td>
<td>1.00</td>
<td>1.33</td>
<td>1.66</td>
<td>1.99</td>
</tr>
<tr>
<td>1920</td>
<td>1080</td>
<td>60</td>
<td>1.00</td>
<td>1.49</td>
<td>1.99</td>
<td>2.49</td>
<td>2.99</td>
</tr>
<tr>
<td>3840</td>
<td>2160</td>
<td>30</td>
<td>1.99</td>
<td>2.99</td>
<td>3.98</td>
<td>4.98</td>
<td>5.97</td>
</tr>
<tr>
<td>3840</td>
<td>2160</td>
<td>60</td>
<td>3.98</td>
<td>5.97</td>
<td>7.96</td>
<td>9.95</td>
<td>11.94</td>
</tr>
</tbody>
</table>

= Multi-Gigabit/s of raw bandwidth

Sensor Fusion
Moving processing of data from sensors to a centralized GPU

= Multi-Gigabit/s data over the network

- Processing Unit
- Radar, Lidar, Sonar
Autonomous Vehicles Networking Additional Requirements

Security
- Prevent unauthorized remote control of the vehicle – whether physically on the vehicle or through the air
- Protection from data hacking
- Defend from system software harmful modifications

Reliability/Safety
- Zero failures for critical-function systems
- Failsafe: failure doesn’t jam the network
- Failover: failure triggers backup device operation
- System operations under harsh conditions (temperature, humidity, dust, EMC, …)
- Reliable operation over long life cycle

Solutions
- Encryption
- PHY-layer Security
- Secure boot

Requirements
- Redundancy through multiple data paths
- Mature HW/SW stack
Redundancy in the Backbone
Redundancy to the Camera/Sensors

[Diagram showing redundancy between two GPUs and multiple camera/sensor connections through an Automotive Ethernet Switch]
Ethernet Supports All Topologies

- **Ring**
- **Mesh**
- **Tree**
- **Interconnected**
- **Star**
- **Daisy-chain**
In-Vehicle-Network (IVN) for ADAS

Redundancy

Switch with Multiple PHYs

Radar, Lidar, Sonar

Camera

Controller

PHYs/Bridges

Ethernet link – 2.5/5/10G

Ethernet link – 25G/…
Future IVN Required to Integrate a Broad Range of Applications

- ADAS
- Infotainment
- Telematics
- Storage
- Gateway

- Radar, Lidar, Sonar
- Camera
- Switch with Multiple PHYs
- Controller
- PHYs/Bridges
- Ethernet link – 2.5/5/10G
- Ethernet link – 25G/…

- Storage
- V2V/V2I
- Wi-Fi/BLE
- GPS
Ethernet Technologies that Benefit IVN

- VLAN (802.1Q)
- Security (MACsec)
- Switching (802.1)
- Synchronization (1588 PTP)
- QoS (AVB/TSN)
- Audio/Video Transport Protocol (1722)
- Multiple topologies (mesh, star, P2P, daisy-chain, ring)
- Asymmetrical transmission Power Saving (EEE)
- Multi-Gig MAC rates: 2.5G, 5G, 10G, 25G, 50G, 100G
- Time Triggered Ethernet (SAE AS6802)
- Power over cable (PoDL)
- Power Saving (EEE)
- Multi-Gig MAC rates: 2.5G, 5G, 10G, 25G, 50G, 100G
Why Other Technologies Emerged for High-Speed Interfaces?

- Ethernet PHYs only supported up to 100Mbps and later 1Gbps.
- IVN Network required higher speeds.
- Vacuum created → Proprietary technologies emerged to fill in the gap.
Why Ethernet Going to Take Over for High-Speed Interfaces

2016 – Automotive Ethernet PHY at 2.5G, 5G and 10Gbps introduced in the market (Aquantia)

2017 – New standard (IEEE 802.3ch) is emerging for 2.5G, 5G and 10Gbps Automotive Ethernet PHY
The Power of the Ethernet Ecosystem

Automotive Ethernet

- Multiple vendors
- Lower cost
- Knowledge / Know-how
- SW/Driver availability from many vendors/sources
- Tools for development and diagnostic
- Wide availability of Bridges from other protocols to Ethernet (e.g. USB, PCIe, CAN, …)
- Dominant network – Eliminates need for gateways to/from specialized networks

Next step: Adopting the Existing Ethernet Ecosystem into the Automotive World
• New alliance established by key players in the Automotive market
• “NAV” = Networking for Autonomous Vehicles
• Navigating the Future of Connectivity
The NAV Alliance

Founded by

AQUANTIA

BOSCH

Continental

NVIDIA

VOLKSWAGEN GROUP OF AMERICA

Leading car manufacturers, system and component suppliers in the automotive market

Purpose

To provide a platform for the automotive industry to develop the next generation of in-vehicle network infrastructure for autonomous vehicles and facilitate wide deployment of networking technologies and products, with a focus on interoperability, security and reliability of the network.
The Big Picture

Trust

Human trust in Machine-Driven car. Reliability: System is always ON.

Redundancy

Redundancy for critical-mission components, and traffic routes.

Network

Networking and switching elements are required to support redundancy.

Ethernet

Ethernet provides the speed, features, maturity and ecosystem for redundant network.
Thank you.