
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.2™-1992 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)--
Part 2: Shell and Utilities

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not
constitute an alteration to the original standard. In addition, interpretations are not
intended to supply consulting information. Permission is hereby granted to download
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the
IEEE Standards Department for the appropriate license. Use of the information contained
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #43
Topic: Regular Expressions imprecise specification Relevant Clauses: 2.8

Issue D: These questions address areas of imprecision in the specifications of REs. With
regard to question [13], 1003.2 uses various terms roughly synonymously (leftmost,
first, earliest) (subpattern, subexpression) for describing a left-to-right order across a
line of text. It would be well if the text (and rationale) used one term consistently. [12]
Can a duplicated subexpression match the null string? If so, will the duplication be re-
peated until the expression does match the null string? Proposed solution A subexpres-
sion that can match a null string shall not be duplicated. Rationale Although adjacent
duplication symbols are illegal (for no apparent reason, particularly for EREs), \(x*\)* is
a legal expression, in which the *s are not adjacent, that raises the question: how many
times is the null string matched? Suppose that \(x*\)* were allowed. Does matching it
to xxx yield \1 = xxx or \1 = null? The latter alternative is consistent with the rule that a
null string is longer than no match. By extending xxx with a null string instead of noth-
ing, one gets a longer match. More null strings make even longer matches.

To avert metaphysical questions about the last element of an infinite sequence, or an
element following an infinite sequence, one could forbid null iterations. But this has an
unsatisfying corollary that \(x*\)* wouldn’t match the null string. Compromise positions
might forbid null iterations after the first iteration or after the first null iteration. Such
special pleading and the resultant implementation complexity is not worth the return.
Lord and McIlroy have implemented a no-null-unless- first policy; Spencer has imple-
mented repeat-until- null. Spencer’s interpretation seems perhaps less strained, until
you realize that it makes references (\1, \2, etc) to contents of duplications useless be-
cause they will always be null or undefined. The proposed solution also outlaws EREs like
(a?|b)*, (a?)\{2,2\}, and . ([a- z]*(|^))* The set of regular languages is unchanged,

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

however. There would still be legal equivalents to these and all other outlawed expres-
sions.

An alternative, to leave the meaning undefined, is unacceptable. Users will be unaware
of the exact bounds of portability, and their biggest intellectual investments - the hard-
est expressions and sed scripts - are liable to be unportable. [13] What is the meaning
of the BRE \(\)? [2.8.5.2] Proposed solution Forbid this expression. It would be also ac-
ceptable, but rather less so, to define that the pattern \(\) matches the null string.

Rationale: The pattern has no analog in EREs, no utility, and to our knowledge no basis
in history. It should thus be banned. Otherwise, at least define what it means. [14] On
line 2792, what is left-to-right order in a match?

Proposed solution: Insert the following text at the end of line 2792: A nested subpattern
is to the left of the subpattern that contains it. An earlier iteration of a duplicated sub-
pattern is to the left of a later iteration. Neither side of an alternation is to the left of the
other. Length ties in an alternaion are broken in favor of the left side.

Rationale: Consider the pattern \(\(...\)*\(.....\)*.\).* matched against the string
xxxxxx. Is the leftmost subpattern the first complete subpattern, namely ..., or the
pattern that lexically starts first, namely \1? Call these two cases “first-finished” and
“first-begun”. The proposed solution adopts first- finished. A first-finished match yields
\1 = xxxx, \2 = xxx, and \3 unmatched. A first- begun match yields \1 = xxxxxx, \2
unmatched, and \3 = xxxxx. Lord and Spencer both do first- finished matching, al-
though Spencer argues for first-begun. In many cases, including the present example,
first- finished matching can be done with less backtracking. McIlroy implemented both
and found first- begun much more awkward than first- finished. Historical practice favors
first-finished. The left-associativity of concatenation (line 3256) and the transparency of
parentheses (line 2977) together imply that \(...\)*\(.....\)*.* and \(\(...\)*\(.....\)*\).*
should match the same way. Under first-begun matching to xxxxx, in the former case
subpattern \(...\)* matches xxx; in the latter it matches the null string. Thus first-begun
matching entails a contradiction. [15] To which match is a backreference to a duplicated
subexpression bound? [2.8.3.3(4)]

Proposed solution: A backreference to a subexpression contained in a duplication is
bound to the (possibly nonexistent) match to the subexpression in the most recent iter-
ation of the duplication. Thus \(\(.\)\2\)* matches xxyyzz, with \2 referring to x, y, and
z respectively in the three iterations of the outer subexpression. However, \(\(.\)*\2#\)*
matches only the first six characters of xx#yy##, because in a third iteration of the
outer subexpression, . would match nothing (as distinct from matching a null string) and
hence \2 would match nothing.

Rationale: Current implementations agree on this interpretation, which is a natural gen-
eralization of binding in regmatch structures by regexec(). [B.5.2]

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

Interpretation Response
The standard does not require the successful matching of a null string after a success-
ful match on a non null string for duplication symbols. However, the standard does not
clearly say that you are not allowed to match null strings after a successful match.
Therefore the standard in ambiguous.

The definition of a back reference expression in subclause 2.8.3.3 does not specify which
match of a subexpression followed by a duplication symbol is to be returned. We note
however that the definition regcomp() defined in clause B5.1 pg 728 344-346 indicate
that the back reference expression will match the last string matched by the sub expres-
sion. The standard is unclear on this issue, and no conformance distinction can be made
between alternative implementations based on this. This is being referred to the spon-
sor. Q13 Pg 89 line 3263 requires this form to be accepted. But, the text 2.8.3 does not
describe its meaning. Concerns about the wording of this part of the standard have been
forwarded to the sponsor.

This section New to this revision Part 14: The text on page 82, lines 2975-2979, and
page 77, lines 2791-2796 are in conflict and as such the standard is unclear on this
issue, and no conformance distinction can be made between alternative implementa-
tions based on this. This is being referred to the sponsor. Part 15: The standard does not
speak to this issue, and as such no conformance distinction can be made between alter-
native implementations based on this. This is being referred to the sponsor.

Rationale for Interpretation
None.

