
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.2™-1992 IEEE Standard for
Information Technology--Portable Operating System Interfaces (POSIX®)--
Part 2: Shell and Utilities

Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not
constitute an alteration to the original standard. In addition, interpretations are not
intended to supply consulting information. Permission is hereby granted to download
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the
IEEE Standards Department for the appropriate license. Use of the information contained
in this document is at your own risk.

IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #107
Topic: various awk requests Relevant Clauses: 4.1

Number 1 of 23: page 163, subclause 4.1.2./page 172, subclause 4.1.7.3.
Lines 21 and 22 describe what happens if $0 is updated, that NF is changed to reflect
this. Unfortunately, nothing is said about what happens when NF is assigned to. I sug-
gest adding the following wording to 4.1.2. Assigning a new value to NF changes the
value of $0. If the new value is smaller than the previous one, then the extra fields are
deleted. If the new value is greater than the previous one, the new fields are created
with the null string as their value, and the record is rebuilt using the current value of
OFS to separate the fields. This could be added to 4.1.7.3 instead.

Number 2 of 23: page 167, subclause 4.1.7.1.
Lines 143-145 state that”a missing action shall be equivalent to an action that writes the
matched record of input to standard output.” The traditional meaning of a missing action
has been that it is equivalent to ‘{ print }’. This has important semantic ramifications,
in that the value of ORS can affect how the record is written to standard output. The
current wording could conceivably treat a missing action as if it were { printf “%s”, $0
} with no trailing record separator. I suggest adding”, as if by a call to the print function
with no arguments” to the end of line 145.

Number 3 of 23: page 167, subclause 4.1.7.1.
lines 361 to 364 state that NF retains its value inside an END action. But no mention is
made anywhere as to whether $0 keeps the value of the last record read, inside the END
action. Unix awk sets $0 to “” and NF to 0 inside an END action. GNU awk and mawk
both preserve $0 and NF into the END action. In e-mail to me, I have been told that
logically it makes sense for $0 and NF to be preserved in the END rule, and that it just

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

wasn’t done because it would have complicated the implementation. Since POSIX al-
ready says that NF is preserved, it should say that $0 is preserved too. Add the following
text to the end of 4.1.7.1, on line 155, or as a new paragraph. Within an END action, $0
shall refer to the value of the last record read from the last input file. (Of course, within
an END action, getline commands with a redirection and without a variable shall change
the value of $0 and NF.)

Number 4 of 23: page 168, subclause 4.1.7.1.
No mention is made of what the behaviour should be for an empty source program: awk
‘’ file1 ... or if the source file is empty awk -f source data ... and the source file is of zero
size. All current implementations simply exit silently with an exit value of zero. At the
beginning of the section, after line 138, insert the following text: If either the source
code operand on the command line, or the source file(s) supplied via the -f option are
empty, awk shall immediately exit with a return status of zero. Gawk is the only awk
that will split strings across newlines using \, like C. This would also be a useful feature
to standardize, making awk more like C.

Number 5 of 23: page 170, subclause 4.1.7.2.
Lines 274-297 describe arrays. Nowhere is it stated that arrays and scalars share the
same name space. On line 279, right before the description of how unsubscripted array
names can be used, add the following sentence. An array and a scalar variable cannot
have the same name. (Actually, this is noted on lines 750 and 751, when discussing
parameter names; that is an unobvious place, and the information should be duplicated
here too.)

Number 6 of 23: page 170, subclause 4.1.7.2.
Lines 298-303 describe the rules for comparisons. Unfortunately, they are just plain bro-
ken, because of they way numeric strings are compared as numbers. The current rules
cause the following code if (0 ==”000”) print”strange, but true” else print”not true” to
do a numeric comparison, causing the if to succeed. It should be intuitively obvious that
this is incorrect behaviour, and indeed, no existing implementation of awk actually be-
haves this way. The solution is a bit involved. First, at line 269, add the statement This
type is used when performing comparisons. Next, replace lines 298-303 with a new sub-
clause describing how comparisons are done.

Here is the text we will be using in the GNU Awk manual:

1. A numeric literal or the result of a numeric operation has the NUMERIC attribute.
2. A string literal or the result of a string operation has the STRING attribute.
3. Fields, getline input, FILENAME, ARGV elements, ENVIRON elements and the elements
of an array created by split that are numeric strings have the STRNUM attribute. Oth-
erwise, they have the STRING attribute. Uninitialized variables also have the STRNUM
attribute.
4. Attributes propagate across assignments, but are not changed by any use. When two
operands are compared, either string comparison or numeric comparison may be used,

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

depending on the attributes of the operands, according to the following (symmetric) ma-
trix:

+-- |	 STRING	 NUMERIC
STRNUM
--------+--
|
STRING |	 string	string	string
|
NUMERIC |	string	numeric	 numeric
|
STRNUM |	 string	numeric	 numeric
--------+--

This is the single biggest problem in the awk part of the standard. It is critical that the
comparison rules be fixed. The above text is what both the GNU Awk developers and the
mawk author , have agreed to and have been using for around three years. It is correct,
and it works.

Number 7 of 23: page 171, subclause 4.1.7.3.
Lines 313 and 314 state that references to non-existent fields produce the null string.
It should also be stated that no new field is created. Add the following sentence: Such
references do not actually create new fields beyond $NF.

Number 8 of 23: page 171, subclause 4.1.7.3.
Lines 335 and 336 discuss the CONVFMT variable. It should be reiterated that the result
of a number to string conversion is unspecified if CONVFMT is not a floating point for-
mat. Copy the statement to this effect from lines 179-181 to this point.

Number 9 of 23: page 172, subclause 4.1.7.3.
Line 372; the word “separation” should be “separator”. Make the change.

Number 10 of 23: page 173, subclause 4.1.7.4.
Lines 394 and 395 state that a / must be escaped with a \ inside an ERE. This is real-
ly only true for ERE tokens, not for string constants used as EREs. Change the wording
to: Using a slash character within an \f(CWERE\fP token requires the escaping shown in
Table 4-2.

Number 11 of 23: page 173, subclause 4.1.7.4.
Lines 400-402 discuss the use of matching, and mention the circumflex and dollar oper-
ators. It needs to be emphasized that in awk, ^ and $ apply only to the beginning and
end of the *string*, and that they don’t work against embedded newlines. Add the fol-
lowing after and outside the parenthesized remark. The circumflex and dollar-sign spe-
cial operators apply to the string as a whole, and not to any newlines embedded in the
string; the last character before an embedded newline is not matched by the dollar-sign,

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 4

nor is the first character after an embedded newline matched by the circumflex.

Number 12 of 23: page 173, subclause 4.1.7.4.
Lines 422-428 describe the behaviour of FS. They leave out the case where FS is the
null string. In this case, Unix awk, GNU awk and mawk all treat the whole record as one
field. In the next major release of GNU awk, this case will be used to split the record into
fields that are a single character in size. Therefore, the case for FS = “” should be made
explicitly unspecified (I’ve had agreement that single character splitting is a good idea).
Renumber items (1) and (2) to be items (2) and (3). Insert the following new text for
item (1): (1) If FS is the null string, the behaviour is unspecified.

Number 13 of 23: page 173, subclause 4.1.7.4.
Line 434 should state that include the ~ and !~ operators in the list of cases where
matching is not based on input records. Change the sentence to Except for the ~ and !~
operators, and in the gsub, match, split and sub built-in functions, ...

Number 14 of 23: page 175, subclause 4.1.7.6.1./page 180, subclause 4.1.7.6.2.3.
Lines 509 and 716 both indicate that the expression is evaluated to produce a string to
be used at the *full* pathname for the file to be opened. If I understand this correctly,
this means a pathname beginning with a slash. This is both unnecessary and incorrect. I
also don’t see the term”full pathname” defined in 2.2.2 (but only after a brief look). Re-
move the term”full” from both these lines. A careful search of the entire text of the awk
standard should be performed for similar usages; these are the only two that I found but
there may be others that escaped me.

Number 15 of 23: page 175, subclause 4.1.7.6.1.
There is an extraneous period after the right parenthesis on line 515. Remove the peri-
od. (:-)

Number 16 of 23: page 176, subclause 4.1.7.6.1.
Lines 539 and 540 say that the printf format is similar to that used in 2.12, and that’s
it. What happens if someone uses a C style format, like ‘%lf’? It’s not specified at all.
Either flags not listed in 2.12 should not be allowed, or the behaviour should be unspec-
ified. Add the following after line 540: The format notation shall not contain flag charac-
ters other than those specified in clause 2.12. This makes the characters illegal. I think
this is best, since they flags like ‘l’ and ‘h’ make no sense for double precision numbers.
(Hmmm, is this covered by item 10 on page 177?)

Number 17 of 23: page 176, subclause 4.1.7.6.1.
There is no discussion of what the behaviour should be when an integer format is used
(%d, %x, %o, etc) and the double precision number is outside the range of a long or
unsigned long. GNU awk currently detects this and switches to %g notation, other awks
do different (weird) things. Change the current item (10) on page 177 to (11), and in-
sert the following text as the new item 10. (10) If the d, i, o, u, x, or X conversion spec-
ifications are used, but the value to be formatted is outside the range of long integer

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 5

(if negative) or unsigned long integer (if positive), then the g conversion shall be used
instead. (References could be made to LONG_MIN and ULONG_MAX instead, if that is
more suitable...) I prefer this over making it unspecified, since the users can rely on the
output being sane, without having to worry about portability.

Number 18 of 23: page 177, subclause 4.1.7.6.2.1.
Line 592 does not state that the units of the x and y arguments to atan2 should be in
radians, and that the return value is also in radians. Change line 592 to atan2(y,x)	Re-
turn the arctangent of y/x, where x and y are in radians, and the result is in radians.

Number 19 of 23: page 178, subclause 4.1.7.6.2.2.
Lines 629-638 describe the split function. Not mentioned here is the fact that the array
is cleared first before the new elements are assigned to it (this is existing practice). Here
is some code showing the semantics: a[1] = 1; a[2] = 2; a[3] = 3 split(“1 2”, a) if (3
in a) print”awk is broken” else print”all is ok” I.e., all the elements are deleted; a[3] is
not kept around just because only two elements were split out of the string. At line 630,
after the first sentence, insert the following sentence: All elements of the array a are
deleted from the array before the split is performed.

Number 20 of 23: page 179, subclause 4.1.7.6.2.2.
Lines 656-660 describe the substr function. It is not quite clear what happens if you
supply a requested number of characters that is greater than the number of characters
left in the string. On line 658, change “If n is missing” to “If n is missing, or if n specifies
more characters than are left in the string,”.

Number 21 of 23: page 179, subclause 4.1.7.6.2.3.
Line 693 uses the word “file” whereas the rest of the section on getline uses the
word”stream”. Change “file” to”stream”.

Number 22 of 23: page 181, subclause 4.1.7.6.2.4.
The discussion of function arguments does not state anywhere that duplicate parameter
names are not allowed. Add the following statement to the end of the paragraph at line
751. No parameter to a function shall have the same name as another parameter of the
same function.

Number 23 of 23: Suggested Enhancements for AWK
The following three items are features available in at least one version of awk that could
profitably be added to the awk standard. He recently added an ‘fflush’ function that
takes the name of an open output file or pipe and flushes the output. GNU Awk picked
this up and extended it so that a call with either a null string or no argument flushes all
open files. A description for this might be flush([FILE]) Flush any buffered output for the
file or pipe FILE. If FILE is omitted, buffered output for all open files and pipes is flushed.
It would be really nice to have some way to mix command line source code and code
from a file. This would allow the use of library functions together with programs on the
command line. I’d like to suggest a ‘-s’ option for this: awk -s ‘my program’ -f libfile1 -f

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 6

libfile2 datafile1 datafile2 ... Gawk uses a -W option for this, currently. Gawk has a vari-
able ARGIND, that indicates the index in ARGV of the current data file being read. This
is useful for tracking how far along in the data one is. Text for the description could be:
ARGIND The index in ARGV of the current data file being processed. ARGIND may be
changed by the user’s program, but it is automatically reset whenever a new data file is
opened.

Interpretation Response
#1: The standard does not speak to this issue, and as such no conformance distinction
can be made between alternative implementations based on this. This is being referred
to the sponsor.

#2: The standard is unclear on this issue, and no conformance distinction can be made
between alternative implementations based on this. This is being referred to the sponsor.

#3: The standard clearly does not specify what happens to $0, and that NF does not
change from the previous value, and conforming implementations must conform to this.

#4: The standard is clear in that it requires all input files to be read, and conforming im-
plementations must conform to this. However, this does not match historic practice, and
concerns have been raised about this which have been referred to the sponsor.

#5: The standard states that the same name shall not be used within the same scope
of both a scalar variable and an array, and conforming implementations must conform
to this. However, concerns have been raised about this which are being referred to the
sponsor.

#6: The standard states the rules for comparison, and conforming implementations
must conform to this. However, concerns have been raised about this which are being
referred to the sponsor.

#7: We do not believe that there is any confusion generated by the standard on this
issue, however, concerns have been raised about this which are being referred to the
sponsor.

#8: The standard clearly states in line 320 of page 171 a reference to 4.1.7.2 concern-
ing behavior for the CONVFMT variable, and conforming implementations must conform
to this.

#9: This is an editorial change and is accepted without comment.

#10: The standard states the behavior for / and \, and conforming implementations
must conform to this. However, concerns have been raised about this which are being
referred to the sponsor.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 7

#11: The standard clearly states in subclause 2.8.4 and 2.8.4.6 the behavior for ^ and
$, and conforming implementations must conform to this.

#12: The standard does not speak to this issue, and as such no conformance distinction
can be made between alternative implementations based on this. This is being referred
to the sponsor.

#13: The standard is unclear on this issue, and no conformance distinction can be made
between alternative implementations based on this. This is being referred to the sponsor.

#14: We do not believe that the term “full pathname” implies a path beginning with a
“/”. This would be referred to as “absolute pathname”. However, we agree that the term
“full pathname” is not defined by the standard. Therefore the normal english usage of
the term “full” would mean that it is the entire pathname as opposed to part of a path-
name, but the pathname could be either relative or absolute. However, concerns have
been raised about this which are being referred to the sponsor.

#15: This is an editorial change and is accepted without comment.

#16: The standard does not speak to this issue, and as such no conformance distinction
can be made between alternative implementations based on this. This is being referred
to the sponsor.

#17: Subclause 4.1.7.6.1 page 177 line 572-575 indicate that values being printed ex-
cept for characters are converted to the appropriate type for the conversion specifica-
tion. For %d, the rules are described in 4.1.7.2 page 167, lines 173-184 as modified by
page 176 lines 532-538 which indicates that numeric values that are exactly equal to the
value of an integer are converted using a %d format. Otherwise using the format speci-
fied by the format OFMT(which by default is %.6g). Subclause 2.9.2.1 says that integer
variables in awk shall be implemented as if it were a C signed long data type. Therefore
a value overflowing a C signed long would not have a numeric value taht is equal to an
integer. Therefore the standard requires that these values be printed using the OFMT
format. The standard clearly states the behavior for printing and formatting, and con-
forming implementations must conform to this.

#18: The standard is unclear on this issue, and no conformance distinction can be made
between alternative implementations based on this. This is being referred to the sponsor.

#19: The standard does not speak to this issue, and as such no conformance distinction
can be made between alternative implementations based on this. This is being referred
to the sponsor.

#20: The standard does not speak to this issue, and as such no conformance distinction
can be made between alternative implementations based on this. This is being referred
to the sponsor.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 8

#21: This is an editorial change and is accepted without comment.

#22: The standard does not speak to this issue, and as such no conformance distinction
can be made between alternative implementations based on this. Further, we believe
that it is obvious that application writers should not use this construct.

#23: The standard obviously does not implement the suggested enhancements, this in-
terpretation request does not address any issue presented in IEEE 1003.2-1992. To add
new functionality to a standard, a PAR should be submitted.

Rationale for Interpretation
None.

Interpretation Follow up
Number 1 of 9: page 167, subclause 4.1.7.1.
lines 361 to 364 state that NF retains its value inside an END action. But no mention is
made anywhere as to whether $0 keeps the value of the last record read, inside the END
action. Unix awk sets $0 to “” and NF to 0 inside an END action. GNU awk and mawk
both preserve $0 and NF into the END action. In e-mail to me, I have been told that
logically it makes sense for $0 and NF to be preserved in the END rule, and that it just
wasn’t done because it would have complicated his implementation. since POSIX already
says that NF is preserved, it should say that $0 is preserved too. Add the following text
to the end of 4.1.7.1, on line 155, or as a new paragraph. Within an END action, $0 shall
refer to the value of the last record read from the last input file. (Of course, within an
END action, getline commands with a redirection and without a variable shall change the
value of $0 and NF.)

The response was: The standard clearly does not specify what happens to $0, and that
NF does not change from the previous value, and conforming implementations must con-
form to this. The answer merely restates the problem, which IS that the standard does
not specify what happens to $0. I believe that it should! Therefore I propose the above
suggested new wording.

Number 2 of 9: page 176, subclause 4.1.7.6.1.
There is no discussion of what the behaviour should be when an integer format is used
(%d, %x, %o, etc) and the double precision number is outside the range of a long or
unsigned long. GNU awk currently detects this and switches to %g notation, other awks
do different (weird) things. Change the current item (10) on page 177 to (11), and in-
sert the following text as the new item 10. (10) If the d, i, o, u, x, or X conversion spec-
ifications are used, but the value to be formatted is outside the range of long integer
(if negative) or unsigned long integer (if positive), then the g conversion shall be used
instead. (References could be made to LONG_MIN and ULONG_MAX instead, if that is
more suitable...) I prefer this over making it unspecified, since the users can rely on the
output being sane, without having to worry about portability.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 9

The response was: Subclause 4.1.7.6.1 page 177 line 572-575 indicate that values be-
ing printed except for characters are converted to the appropriate type for the conver-
sion specification. For %d, the rules are described in 4.1.7.2 page 167, lines 173-184 as
modified by page 176 lines 532-538 which indicates that numeric values that are exactly
equal to the value of an integer are converted using a %d format. Otherwise using the
format specified by the format OFMT(which by default is %.6g). Subclause 2.9.2.1 says
that integer variables in awk shall be implemented as if it were a C signed long data
type. Therefore a value overflowing a C signed long would not have a numeric value that
is equal to an integer. Therefore the standard requires that these values be printed using
the OFMT format. The standard clearly states the behavior for printing and formatting,
and conforming implementations must conform to this.

As well as I can interpret this answer, it is saying that the standard says When using
print, and the number is an integer but outside the range of a signed long, OFMT should
be used. While this is useful information to me, it does not answer the question, which
was”what should be printed when using printf (note, NOT print), and an integer type
format, for a number that is outside the range of a signed long?” The quoted sections
refer to conversions between string and numbers, and do not appear (to me, anyway) to
be addressing the issue of *formatting*. Therefore, I again propose the above wording.
(Upon re-reading my original question, it becomes clear that I was not explicit enough
in the question, which related to printf/sprintf. Thus I am partially at fault for not”asking
the right question”. I hope that the problem is now more evident.)

PASC Response to Resubmission
Part 1: The IEEE interpretation process does not change the standard, it merely inter-
prets what the standard states. Because the standard is silent it does not place any
requirements on $0 within an END action, therefore, the standard allows both behaviors
provided by gnu awk, and unix awk.
Part 2: The standard is silent on what happens when a value to be printed by printf
overflows a long data type, and as such no conformance distinction can be made be-
tween alternative implementations based on this. This is being referred to the sponsor.

