
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1™-2001 IEEE Standard for 
Information Technology - Portable Operating System Interface (POSIX®)

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print 
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE 
Standards Department for the appropriate license. Use of the information contained in 
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #26 
Topic: option constants Relevant Sections: unistd.h

“Options” has not been properly updated to account for the new meaning of <unistd.h> 
option constants. It only talks about options being supported or not supported; it doesn’t 
distinguish between support indications made at compile time and at runtime. The lan-
guage for options constants does not state the requirements for presense of headers, 
data types, and functions in the case that a symbolic constant is not defined. 

In section 2.1.6 Change paragraphs 1 and 2 from: The symbolic constants defined in 
<unistd.h>, Constants for Options and Option Groups reflect implementation options 
for IEEE Std 1003.1-2001. These symbols can be used by the application to determine 
which optional facilities are present on the implementation. The sysconf() function de-
fined in the System Interfaces volume of IEEE Std 1003.1-2001 or the getconf utility 
defined in the Shell and Utilities volume of IEEE Std 1003.1-2001 can be used to retrieve 
the value of each symbol on each specific implementation to determine whether the 
option is supported. Where an option is not supported, the associated utilities, functions, 
or facilities need not be present. To: The symbolic constants defined in <unistd.h>, 
Constants for Options and Option Groups reflect implementation options for IEEE Std 
1003.1-2001. These symbols can be used by the application to determine which of three 
categories of support for optional facilities are provided by the implementation:

1. Option not supported for compilation. 
The implementation advertises at compile time (by defining the constant in <unistd.h> 
with value -1, or by leaving it undefined) that the option is not supported for compilation 
and, at the time of compilation, is not supported for runtime use. In this case, the head-
ers, data types, function interfaces and utilities required only for the option need not be 
present. A later runtime check using the fpathconf(), pathconf(), or sysconf() functions 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

defined in the System Interfaces volume of IEEE Std 1003.1-2001 or the getconf utility 
defined in the Shell and Utilities volume of IEEE Std 1003.1-2001 can in some circum-
stances indicate that the option is supported at runtime. (For example, an old applica-
tion binary might be run on a newer implementation to which support for the option has 
been added.)

2. Option always supported. 
The implementation advertises at compile time (by defining the constant in <unistd.h> 
with a value greater than zero) that the option is supported both for compilation and 
for use at runtime . In this case, all headers, data types, function interfaces and utili-
ties required only for the option shall be available and shall operate as specified. Run-
time checks with fpathconf(), pathconf(), or sysconf() shall indicate that the option is 
supported. 3. Option might or might not be supported at runtime. The implementation 
advertises at compile time (by defining the constant in <unistd.h> with value zero) that 
the option is supported for compilation and might or might not be supported at runtime 
. In this case, the fpathconf(), pathconf(), or sysconf() functions defined in the System 
Interfaces volume of IEEE Std 1003.1-2001 or the getconf utility defined in the Shell 
and Utilities volume of IEEE Std 1003.1-2001 can be used to retrieve the value of each 
symbol on each specific implementation to determine whether the option is support-
ed at runtime. All headers, data types, and function interfaces required to compile and 
execute applications which use the option at runtime (after checking at runtime that the 
option is supported) shall be provided, but if the option is not supported at runtime they 
need not operate as specified. Utilities or other facilities required only for the option, but 
not needed to compile and execute such applications, need not be present.

If an option is not supported for compilation, an application that attempts to use any-
thing associated only with the option is considered to be requiring an extension. Unless 
explicitly specified otherwise, the behavior of functions associated with an option that 
is not supported at runtime is unspecified, and an application that uses such functions 
without first checking fpathconf(), pathconf(), or sysconf() is considered to be requiring 
an extension. In <unistd.h> section: Constants for Options and Option Groups Replace 
the first six paragraphs with: The following symbolic constants, if defined in <unistd.
h> shall have a value of -1, 0, or greater, unless otherwise specified below. If a sym-
bolic constant is not defined or is defined with the value -1, the option is not supported 
for compilation. If it is defined with a value greater than zero, the option shall always be 
supported when the application is executed. If it is defined with the value zero, the op-
tion shall be supported for compilation and might or might not be supported at runtime. 
See Section 2.1.6 for further information about the conformance requirements of these 
three categories of support.

Interpretation Response 
The standard is unclear on this issue, and no conformance distinction can be made be-
tween alternative implementations based on this. This is being referred to the sponsor.



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

Rationale for Interpretation 
The current wording regarding options was motivated as a response to the number of 
amendments produced during the 1990s. The intent was that implementations of the 
standard need not change to show that they do not support a new feature added by 
an amendment or a companion standard building on this document (note that amend-
ments are out of scope for this revision). It was envisaged that applications could make 
a runtime call to getconf within a Makefile build optional code, and/or possibly use the 
dlopen() function at runtime to link in objects built using the option. There was agree-
ment that this is a perhaps a bit convoluted and that we should forward concerns to the 
sponsor about the current wording for option constants.


