
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1™-2001 IEEE Standard for
Information Technology - Portable Operating System Interface (POSIX®)

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not con-
stitute an alteration to the original standard. In addition, interpretations are not intend-
ed to supply consulting information. Permission is hereby granted to download and print
one copy of this document. Individuals seeking permission to reproduce and/or distrib-
ute this document in its entirety or portions of this document must contact the IEEE
Standards Department for the appropriate license. Use of the information contained in
this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #3
Topic: Defect in XSH dlsym Relevant Sections: dlsym

The “dlsym()” function is defined as returning “the address of a symbol”. According to
the Example, “dlsym ()can be used to access either function or data objects”. The return
type of dlsym is a “void *”. In order to actually call a function using the pointer returned
by “dlsym()”, the pointer must be converted from a “void *” type to a pointer to function
type. However, the ISO C Standard says that converting a “void *” type to a pointer to
function type results in undefined behavior. At least one major compiler reports a warn-
ing when attempting such a conversion, even with an explicit cast.

I would like a new function added that returns the address of a function object symbol
and whose return type is a function pointer. For example: fptr_t dlsym_f(void *restrict
handle, const char *restrict name); Standard C requires that a pointer to a function of
one type may be converted to a pointer to a function of another type and back again,
and the result shall compare equal to the original pointer. Therefore, “fptr_t” can be de-
fined as any pointer to function type. The “dlsym()” function could continue to be used
for data objects. As an extension, implementations that allow converting from “void *”
to pointer to function types could continue to allow using “dlsym()” in addition to “dl-
sym_f()” for function objects. This would allow backwards compatability, while offering a
more portable option for new code.

Interpretation Response
The standard clearly states the requirements for dlsym(), and conforming implementa-
tions must conform to this. The dlsym() function is marked as part of the X/Open Sys-
tem Interfaces Extension (by the XSI margin marking). Systems conforming to the X/
Open Systems Interfaces Extension are indeed required to be able to convert between
function pointers and void * data pointers without losing data. This is most clearly stat-

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

ed in the description of the va_arg() macro in the description of (XBD, P310, L11109-
11119) where the XSI shading on L11119 indicates that implementations supporting
the X/Open System Interfaces Extension are required to be able to handle pointers to
any type of object, not just pointers to data. The XSI margin marking description clearly
states that requirements like this are extensions to the requirements of the C Standard.
In this case, the 1999 C Standard does indeed require a warning to be issued for the
function call shown in the dlsym() examples section on XSH P259, L8566. An equivalent
form of this call: *(void **)(&fptr) = dlsym(handle, “my_function”); does not generate
compiler warnings and will work correctly on all systems supporting the X/Open System
Interfaces Extension.

Rationale for Interpretation
See above response.

Notes to the Editor (not part of this interpretation)
In a TC or revision of the standard make the following changes: 1. XSH P259, L8566
(EXAMPLES): Change from: fptr = (int (*)(int))dlsym(handle, “my_function”); to: *(void
**)(&fptr) = dlsym(handle, “my_function”); 2. XSH P260, L8590 (RATIONALE): Change
from: None. to: The C Standard does not require that pointers to functions can be cast
back and forth to pointers to data. Indeed, the C Standard does not require that an
object of type void * can hold a pointer to a function. Systems supporting the X/Open
System Interfaces Extension, however, do require that an object of type void * can hold
a pointer to a function. The result of converting a pointer to a function into a pointer to
another data type (except void *) is still undefined, however. Note that compilers con-
forming to the C Standard are required to generate a warning if a conversion from a
void * pointer to a function pointer is attempted as in: fptr = (int (*)(int))dlsym(handle,
“my_function”);

