
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-2001 IEEE Standard
Standard for Information Technology -- Portable Operating System Interface
(POSIX®)

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not
constitute an alteration to the original standard. In addition, interpretations are not
intended to supply consulting information. Permission is hereby granted to download
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the
IEEE Standards Department for the appropriate license. Use of the information contained
in this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #107
Topic: test XSI requirements Relevant Sections: XCU test

The XSI requirements for test(1) are ambiguous. Lines XCU 35440-35446 list prece-
dence rules in the Rationale, but this section is non-normative. The normative require-
ment on line 35303 that ‘combinations of primaries and operators shall be evaluated
using the precedence and associativity rules described previously’ is lacking several of
these precedence rules, since they are not mentioned previously in the normative Oper-
ands section.

Example 1: “test \(= \)”. $2, ‘=’ is a binary primary, yet $1 is ‘(‘ and $3 is ‘)’, so both
lines 35295 and 35297 apply. Since there is no normative rule that the string compar-
ison binary ‘=’ has higher precedence than parenthesis surrounding a one-argument
expression, an implementation could perform the binary test of $1 and $3 (false, since
‘(‘ and ‘)’ are not the same string) or the unary test of $2 (true, since ‘=’ is a non-emp-
ty string). However, all XSI implementations I am aware of choose the latter (in other
words, give binary string comparison a higher precedence than () grouping of a single
argument), since that is the behavior required in a non-XSI implementation. My proposal
would require returning 1.

Example 2: “touch file; test ! -a file”. $2, ‘-a’ is a binary primary, yet $1 is ‘!’, so both
lines 35295 and 35296 apply. Implementations are allowed to have, and many XSI im-
plementations actually do have, ‘-a’ as a unary primary, which makes the two-argument
test ‘-a file’ well-formed. Since there is no normative rule that the ‘!’ operator has higher
precedence than the ‘-a’ logical binary operator, an implementation could perform the
dual unary test of $1 and $3 (both true, so the overall -a test is true), or perform the
negated unary test of $2 and $3 (per the Rationale, -a file should return true if file exists

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

and the implementation provides this extension, so the overall ! test is false). There are
existing implementations that give binary -a higher precedence than ! on a 2-argument
test, probably because line 35295 is listed first; bash strives for XSI conformance, but
“bash -c ‘touch file; test ! -a file’” returns true. There are also existing implementations
that follow the precedence mentioned in the rationale; GNU coreutils and zsh both return
false. My proposal would require performing the two-argument test, which has unspec-
ified results, but the overall expression would return 1 in implementations with a unary
-a that returns true on file existance.

Example 3: “touch file; test string -a \(-a file”. Here, even the Rationale doesn’t provide
a precedence between -a and (). If -a has higher precedence than parenthesis, then
there is a valid parse (left-associative binary -a of unary tests on $1 and $3, followed by
unary test on $5; all three strings are non-zero, return true). But if parenthesis have a
higher precedence than any other operator, there is a parse error (no matching ‘)’), and
the return value must be greater than 1. All XSI implementations I am aware of treat
this as a syntax error (in other words, precedence is similar to C where () is higher than
&&). My proposal would require returning greater than 1.

Example 4: “test \(\) = \) \)”. Here, even the Rationale doesn’t provide a precedence
between = and (). If = has higher precedence than parenthesis, then $2 and $4 are
string arguments to $3, and $1 and $5 form a matched set of parentheses, resulting in
true. If parenthesis have higher precedence, then $1 and $4 are treated as a pair (the
grammar does not allow for $1 and $2 to be a pair, since an expression must appear in
between), causing a syntax error with the trailing ‘)’ in $5, as well as with the invalid
2-argument test ‘) =’. Here, behavior between implementations that strive for XSI con-
formance differ, as bash and zsh return 0, while GNU coreutils complains of a syntax
error. My proposal would require returning 0.

Reword the paragraphs at line XCU 35296-7:

If $2 is a binary primary, ‹XSI shading›but not ‘-a’ or ‘-o’,‹/XSI shading› perform the bi-
nary test of $1 and $3. ‹XSI shading›If $1 is ‘(‘, $2 is not a binary primary, and $3 is ‘)’,
perform the unary test of $2.‹/XSI shading›

Add a sentence to the paragraph at line XCU 35274:

‹XSI shading›The ! operator has higher precedence than any unary primary.‹/XSI shad-
ing›

Reword the paragraph at line XCU 35275:

‹XSI shading›(expression) True if expression is true. False if expression is false. The
parenthesis have lower precedence than string comparison binary primaries, but higher
precedence than all other primaries, and can be used to alter the normal precedence and
associativity. It is a syntax error if parenthesis not consumed by a binary string compari-

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

son operator are not balanced.‹/XSI shading›

Add sentences to the paragraph at line XCU 35303:

‹XSI shading›Unary primaries shall have a higher precedence than any other binary
primary, and both unary and binary primaries have a higher precedence than the unary
string primary.‹/XSI shading›

Interpretation Response
The standard is unclear on this issue, and no conformance distinction can be made be-
tween alternative implementations based on this. This is being referred to the sponsor.

Rationale for Interpretation
None.

