
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretations for IEEE Std 1003.1™-2001 IEEE Standard for 
Information Technology - Portable Operating System Interface (POSIX®)

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #38 
Topic: number expressions Relevant Sections: XCU test/ shell arithmetic expansion

What constitutes a number in both of these cases, test(1) and shell arithmetic expan-
sion, does not appear to be specified. This was brought to my attention when I noticed 
the differing implementations. Firstly, zsh, which will return 0 on the first command, and 
the arithmetic expansion will expand to 1. As opposed to FreeBSD’s--and likely BSDs in 
general--/bin/sh, which will cause an error to be echoed to stderr and a non-zero result 
in both cases. At first I contacted the zsh developers, as I assumed this was specified 
behaviour after checking /bin/sh’s and bash’s test implementation. This was not the 
case, and Dan Nelson on the zsh work list responded with examples of other shells that 
behaved the same way as zsh. (A couple notable examples being GNU’s test and pdksh). 
He also said that he believed this fell into undefined behaviour, and, therefore, zsh was 
not incorrect. I then contacted the FreeBSD-standards list to try to confirm that this 
was undefined behaviour. Those who responded believed that this was undefined, and 
thought that I should at least bring this question to the austin group mailing list.

Clarification of what constitutes a number in XCU’s test(1) and shell arithmetic expan-
sion, and perhaps other related locations. Specifically, a given number should be con-
sidered valid if strtol(str, &end, 0) accepts str as a valid number. This would allow the 
usage of hexadecimal and octal numbers in test and arithmetic expansion, which is likely 
a feature that would be welcomed by all. In the case of an invalid number, the utility 
should throw an error and return non-zero, perhaps a standard error code for an invalid 
numbers should be allocated, if one is not already. An invalid number in arithmetic ex-
pansion should cause an error to be thrown before the command is executed, and result 
in a non-zero value, and perhaps a different value than the former so that a distinction 
can be made between where the invalid number error occurred--before or during the 
execution of a command. An important note to make is the contrast between test(1) and 



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

expr(1), where expr defines a valid integer, and test does not.

From http://www.opengroup.org/onlinepubs/000095399/utilities/expr.html: integer - An 
argument consisting only of an (optional) unary minus followed by digits. I also recom-
mend that expr(1) be updated to allow hexadecimal and octal numbers in the format 
that strtol(str, &end, 0) accepts, so as to be consistent with the newly defined behaviour 
in test(1) and shell arithmetic expansion.

Interpretation Response 
The standard does not speak to this issue of what constitutes a number in XCU’s test(1) 
and shell arithmetic expansion, and as such no conformance distinction can be made be-
tween alternative implementations based on this. In the event that the primary operand 
to the primary operators (-gt, -ge, -lt, -le, -eq, -ne) are not integers, implementations 
are free to provide extensions that would recognize those values or to treat them as er-
rors. Point 6 in the Utility Argument Syntax portion of the Utility Conventions (subclause 
12.1 in the Base Definitions volume of the standard) states that unless otherwise speci-
fied, operands that are to be treated as numeric values are to be interpreted as decimal 
integers. Since the test utility doesn’t specify different behavior, the n1 and n2 operands 
to the -eq, -ne, -gt, -ge, -lt, and -le binary primaries are required to be treated as dec-
imal integers. The description of Arithmetic Expansion (subclause 2.6.4 in the Shell and 
Utilities volume of the standard), however, explicitly requires that decimal, octal, and 
hexadecimal constants have to be recognized when performing arithmetic expansions.

Rationale for Interpretation 
None.


