
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-2001 IEEE Standard 
Standard for Information Technology -- Portable Operating System Interface 
(POSIX®)

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park 
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not 
constitute an alteration to the original standard. In addition, interpretations are not 
intended to supply consulting information. Permission is hereby granted to download 
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the 
IEEE Standards Department for the appropriate license. Use of the information contained 
in this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway, 
New Jersey 08855-1331, USA

Interpretation Request #55 
Topic: system() thread-safety, at_fork handlers Relevant Sections: XSH 2.9.1, sys-
tem() Page: 0 Line: 0

1. It is unclear whether calling system(3) invokes atfork handlers in a conforming imple-
mentation. system(3) specifies

“The environment of the executed command shall be as if a child process were created 
using fork(), and the child process invoked the sh utility using execl() as follows:”

In particular, usage of the word “environment” is confusing here. It may refer just to en-
vironment variables, however, the “Application usage” sections indicates that also signal 
handlers should be arranged as if the process was created through fork() and execl(). 
This still makes not clear whether handlers installed through pthread_atfork() are in-
voked.

2.The system() function is defined to be a thread-safe function. The specification re-
quires it to use features which have an affect at the process scope, which renders it non-
thread-safe.

As per the system () interface definition, (XSH P1540 ,L46753-46754 “The system() 
function shall ignore the SIGINT and SIGQUIT signals, and shall block the SIGCHLD 
signal”), the implementation needs to ignore the SIGINT and SIGQUIT signals during 
the execution of system(). To achieve this the implementation needs to literally or ef-
fectively execute the sigaction() function which has process wide scope (XSH P1402, 
L42498,42499, the sigaction() function allows the calling process to examine and/or 
specify the action to be associated with a specific signal).



445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

Since sigaction() can also be called in another thread to set a different signal action for 
SIGINT and SIGQUIT. This makes system() non-threadsafe.

1. The description of system() should change to “system() behaves as if a new process 
was created using fork(), and the child process invoked the sh utility using execl() ...”

In addition, the application usage section should make it clear that atfork handlers are 
invoked.

2. In System Interfaces, section 2.9.1, line 2089, add “system()” to the list of functions 
that need not be thread-safe.

Interpretation Response #55 
1. The standard does not speak to the issue of at_fork() handlers, and as such no con-
formance distinction can be made between alternative implementations based on this. 
This is being referred to the sponsor.

2. The standard states the requirements for thread-safety for system(), and conforming 
implementations must conform to this. However, concerns have been raised about this 
which are being referred to the sponsor.

Rationale for Interpretation 
None.


