IEEE STANDARDS ASSOCIATION <$IEEE

IEEE Standards Interpretation for IEEE Std 1003.1™-2001 IEEE Standard
Standard for Information Technology -- Portable Operating System Interface
(POSIX®)

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not
constitute an alteration to the original standard. In addition, interpretations are not
intended to supply consulting information. Permission is hereby granted to download

and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the
IEEE Standards Department for the appropriate license. Use of the information contained
in this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #67
Topic: pthread_exit(), funlockfile Relevant Sections: XSH pthread_exit() Page: 0 Line:
0

The flockfile functions (flockfile(), ftrylockfile(), and funlockfile()) can be used to lock
and unlock FILE* objects. They can be used to specify a sequence of I/O statements.
This locking of files is much like the locking of mutexes. For example, when a file is
locked by a thread, only that locking thread can operate on the file. The issue comes
about when the locking thread exits without unlocking its locked files. The spec doesn’t
discuss whether or not the locks should be released when the locking thread calls
pthread_exit().

The only relevant statement within the standard is this one on the pthread_exit page:

“Thread termination does not release any application visible process resources, in-
cluding, but not limited to, mutexes and file descriptors, nor does it perform any pro-
cess-level cleanup actions, including, but not limited to, calling any atexit() routines that
may exist.”

We would like clarification if this applies to flockfile et al. That is is the application’s re-
sponsibility to funlockfile() any locks before the thread exits? Or should the implementa-
tion clean up the locks on pthread_exit()?

Interpretation Response #67
The standard clearly states that is the applications responsibility to call funlockfile() be-
fore a thread exits.

445 Hoes Lane, Piscataway, NJ 08854 USA « +1 732 981 0060 * +1 732 981 0027 * standards.ieee.org
Page 1

IEEE STANDARDS ASSOCIATION <$IEEE

Rationale for Interpretation
pthread_exit() is described in the standard and the equivalent operation to funlockfile()
is not on the list of actions to perform and thus it is not allowed to do it.

The standard states on page 383 lines 12369-12370 “The funlockfile() function shall re-
linquish the ownership granted to the thread. The behavior is undefined if a thread other
than the current owner calls the funlockfile() function.”

It is the applications responsibility to call funlockfile before the thread exits.

445 Hoes Lane, Piscataway, NJ 08854 USA « +1 732 981 0060 * +1 732 981 0027 * standards.ieee.org
Page 2

