
445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 1

IEEE Standards Interpretation for IEEE Std 1003.1™-2001 IEEE Standard
Standard for Information Technology -- Portable Operating System Interface
(POSIX®)

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc. 3 Park
Avenue New York, New York 10016-5997 USA All Rights Reserved.

Interpretations are issued to explain and clarify the intent of a standard and do not
constitute an alteration to the original standard. In addition, interpretations are not
intended to supply consulting information. Permission is hereby granted to download
and print one copy of this document. Individuals seeking permission to reproduce and/
or distribute this document in its entirety or portions of this document must contact the
IEEE Standards Department for the appropriate license. Use of the information contained
in this document is at your own risk.

IEEE Standards Department Copyrights and Permissions 445 Hoes Lane, Piscataway,
New Jersey 08855-1331, USA

Interpretation Request #77
Topic: semaphore names, message queue names Relevant Sections: XSH sem_open,
sem_unlink, mq_open, mq_unlink,shm_open Page: 1272-1273 Line: 39878-39907
Page: 814 Line: 26691-26693 Page: 1347-1348 Line: 41993-42052

There are two problems:

1. The sem_open() page has some problems regarding how semaphore names relate to
the rules for pathnames.

The main problem concerns the values of NAME_MAX and PATH_MAX for semaphore
names. The standard states “The name argument conforms to the construction rules for
a pathname”, and these rules include (via the definitions of “pathname” and “filename”)
length requirements related to NAME_MAX and PATH_MAX. This is also apparent from
the description of the ENAMETOOLONG error on the sem_open() page:

“[ENAMETOOLONG] The length of the name argument exceeds {PATH_MAX} or a path-
name component is longer than {NAME_MAX}.”

If NAME_MAX or PATH_MAX is not defined as a constant in , how is an application sup-
posed to determine the value that applies to semaphore names? The standard says on
the page that in this case the values can be obtained from pathconf(), but semaphore
names do not have to appear in the file system, so it is unclear how pathconf() can be
used (portably) to do this.

Even if semaphore names do appear in the file system, there is nothing to suggest that
the place they appear is the same one that would result from using the semaphore name

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 2

as a normal pathname. (I imagine that all implementations that do make semaphores
visible in the file system would put them in a different location, otherwise there would be
an unacceptable risk of name clashes with normal files in the root directory.)

This means that the value obtained from pathconf(dirname(semaphore_name), _PC_
NAME_MAX) might not be the correct value of NAME_MAX. E.g. if semaphores appear
somewhere on the /var file system and /var has a different NAME_MAX value from the
root file system, then the correct NAME_MAX value could be obtained using pathconf(“/
var”, _PC_NAME_MAX) but there is no portable way for an application to know that it
needs to use “/var” as the directory name to pass to pathconf() rather than “/”. It also
means that the value of PATH_MAX, whether obtained from pathconf() or from , may be
too large. E.g. if the implementation prefixes “/var/semaphores” to supplied semaphore
names and then just uses the resulting string as a pathname then an ENAMETOOLONG
error will occur for semaphore names longer than PATH_MAX minus strlen(“/var/sema-
phores”). Requiring implementations to go through hoops so that semaphore names up
to PATH_MAX bytes in length are usable does not seem reasonable.

(There is also a knock-on effect here which creates a problem for the POSIX.13 PSE51
profile of POSIX.1-2001, since PSE51 mandates sem_open() but does not mandate
pathconf().)

I considered various solutions to the pathconf() issue, initially based on the idea that
the “real” pathname rules should apply if semaphore names appear in the file system,
but other rules would apply if they do not. I eventually concluded that there is no ad-
vantage for applications in these kind of solutions. Portable applications cannot rely on
the use of semaphore names longer than _POSIX_PATH_MAX (or _XOPEN_PATH_MAX
on XSI systems), or that have pathname components longer than _POSIX_NAME_MAX
(or _XOPEN_NAME_MAX on XSI systems), so the simplest solution is just to make ENA-
METOOLONG a “may fail” for exceeding these minimum limits. I believe this would make
the standard reflect what happens in current implementations and applications in prac-
tice.

For application writers that wish to take advantage of longer semaphore names on sys-
tems that support them, and don’t mind their applications being non-portable as a re-
sult, we can make the actual limits be implementation-defined (thus requiring them to
be documented).

An alternative solution would be to introduce new _SC_* constants so that the appro-
priate values for semaphore names can be obtained from sysconf(), for example _SC_
SEM_NAME_MAX and _SC_SEM_PATH_MAX. On a system that places semaphores in the
file system under “/var/semaphores”, sysconf() could internally do the equivalent of a
call to pathconf(“/var/semaphores”, _PC_NAME_MAX) to obtain the value. On systems
where slash characters other than the leading slash are not treated as separating path-
name components, sysconf(_SC_SEM_NAME_MAX) would return -1 without setting err-
no.

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 3

Finally, there is another problem that is not a technical issue, but relates to the wording
on the sem_open() page. The statement “The interpretation of slash characters other
than the leading slash character in name is implementation-defined” is clearly intend-
ed as an exception to the construction rules for pathnames when they are applied to
semaphore names, since the meaning of non-leading slash characters is defined by the
construction rules for pathnames (see XBD6 section 3.266: “It has an optional beginning
slash, followed by zero or more filenames separated by slashes.”). The text needs to be
rearranged to join these two statements with “except that” to make this clear.

Also, the requirement to return ENAMETOOLONG when a pathname component is longer
than {NAME_MAX} conflicts with the statement about interpretation of slash characters
other than the leading slash.

Note that all of these issues also affect message queue names. Once a decision has been
made on how to correct the sem_open() page, equivalent corrections should be made
for mq_open().

2. The same issue also affects mq_unlink() and sem_unlink().

Just making the same change to the ENAMETOOLONG error for these functions as was
done for mq_open() and sem_open() would solve the problem, but it would also intro-
duce another: it would permit `Weirdnix’ implementations where a message queue or
semaphore name of a given length can be created, but attempting to unlink it produces
an ENAMETOOLONG error. I have attempted to address this by adding an extra require-
ment on the end of the ENAMETOOLONG descriptions. The wording could probably be
improved, and it may be better to add it in a different place.

In sem_open() DESCRIPTION, page 1272 On line 39878 change:

“The name argument conforms to the construction rules for a pathname.” to: “The
name argument conforms to the construction rules for a pathname, except that the
interpretation of slash characters other than the leading slash character in name is
implementation-defined, and that the length limits for the name argument are imple-
mentation-defined and need not be the same as the pathname limits {PATH_MAX} and
{NAME_MAX}.”

On lines 39881-39882 delete: “The interpretation of slash characters other than the
leading slash character in name is implementation-defined.”

In the ERRORS section Delete lines 39905-39907:

“[ENAMETOOLONG] The length of the name argument exceeds {PATH_MAX} or a path-
name component is longer than {NAME_MAX}.”

445 Hoes Lane, Piscataway, NJ 08854 USA • +1 732 981 0060 • +1 732 981 0027 • standards.ieee.org

Page 4

After line 39910 add: “If any of the following conditions occur, the sem_open() function
may return SEM_FAILED and set errno to the corresponding value: [ENAMETOOLONG]
The length of the name argument exceeds _POSIX_PATH_MAX on systems that do not
support the XSI option [XSI]or exceeds _XOPEN_PATH_MAX on XSI systems[/XSI], or
has a pathname component that is longer than _POSIX_NAME_MAX on systems that do
not support the XSI option [XSI]or longer than _XOPEN_NAME_MAX on XSI systems[/
XSI].”

If these proposed changes are accepted, also make equivalent changes to the mq_
open() page.

2. For mq_unlink Delete lines 26691-26693: “[ENAMETOOLONG] The length of the name
argument exceeds {PATH_MAX} or a pathname component is longer than {NAME_
MAX}.”

After line 26694 add: “The mq_unlink() function may fail if: [ENAMETOOLONG] The
length of the name argument exceeds _POSIX_PATH_MAX on systems that do not sup-
port the XSI option [XSI]or exceeds _XOPEN_PATH_MAX on XSI systems[/XSI], or has
a pathname component that is longer than _POSIX_NAME_MAX on systems that do not
support the XSI option [XSI]or longer than _XOPEN_NAME_MAX on XSI systems[/XSI].
A call to mq_unlink() with a name argument that contains the same message queue
name as was previously used in a successful mq_open() call shall not give an ENAME-
TOOLONG error.”

On page 1281 line 40127-40129 section sem_unlink: Delete lines 40127-40129: “[ENA-
METOOLONG] The length of the name argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.”

After line 40130 add: “The sem_unlink() function may fail if: [ENAMETOOLONG] The
length of the name argument exceeds _POSIX_PATH_MAX on systems that do not sup-
port the XSI option [XSI]or exceeds _XOPEN_PATH_MAX on XSI systems[/XSI], or has
a pathname component that is longer than _POSIX_NAME_MAX on systems that do
not support the XSI option [XSI]or longer than _XOPEN_NAME_MAX on XSI systems[/
XSI]. A call to sem_unlink() with a name argument that contains the same semaphore
name as was previously used in a successful sem_open() call shall not give an ENAME-
TOOLONG error.”

Interpretation Response #77
The standards states the requirements for semaphore and message queue names, and
conforming implementations must conform to this. However, concerns have been raised
about this which are being referred to the sponsor.

Rationale for Interpretation
None.

